1. Prove that if \(f, g \in L^1(\mathbb{R}) \), then \(\| f \circ g \|_1 \leq \| f \|_1 \| g \|_1 \).

By definition \((f \circ g)(x) = \int_{\mathbb{R}} f(y)g(x-y)dy\). Hence by the triangle inequality, \(|(f \circ g)(x)| \leq \int_{\mathbb{R}} |f(y)|g(x-y)|dy| \) and \(\| f \circ g \|_1 = \int_{\mathbb{R}} |(f \circ g)(x)|dx \leq \int_{\mathbb{R}} \| f \|_1 |g(x-y)|dy|dx\). By Fubini the RHS is \(\int_{\mathbb{R}} |f(y)| \left(\int_{\mathbb{R}} |g(x-y)|dx \right) dy\). The inner integral is \(\| g \|_1 \) by an obvious change of variable and thus the whole is \(\| f \|_1 \| g \|_1 \) as required. The fact that this is an upper bound for everything justifies the manipulations.

2. Let \(X > 0 \) and define \(f(x) = \max \left(0, 1 - \frac{|x|}{X} \right) \). Prove that

\[
\hat{f}(t) = \begin{cases} \frac{1}{X} \left(\frac{\sin \pi Xt}{\pi t} \right)^2 & (t \neq 0), \\ X & (t = 0) \end{cases}
\]

and that the inverse Fourier transform of \(\hat{f} \) is \(f \). First a slight simplification – not necessary but it slightly simplifies some formulæ. Put \(f_X(x) = f(x) \). Then a change of variable, \(y = Xx \) gives \(\hat{f}_X(t) = \hat{f}_1(t/X) \), so we can assume \(X = 1 \) henceforward. Extend the function \(f \) to \(\mathbb{C} \setminus \{0\} \) by taking \(f(z) = (\pi z)^{-2} \sin^2 \pi z \). Then \(f \) has a removable singularity at \(z = 0 \) and \(\lim_{z \to 0} f(z) = 0 \). Thus \(f \) is essentially entire. Since \(f(-x) = f(x) \) it suffices to evaluate the integral when \(t \geq 0 \). Let \(L(R, \varepsilon) \), with \(R \) large and \(\varepsilon \) small, denote the path consisting of the line segments from \(-R\) to \(-\varepsilon\) and from \(\varepsilon \) to \(R \), and the semicircle of radius \(\varepsilon \) from \(-\varepsilon\) to \(\varepsilon \) via \(-i\varepsilon\). Then \(\lim_{\varepsilon \to 0} \lim_{R \to \infty} \int_{L(R, \varepsilon)} f(z)e(-zt)dz = \hat{f}(t) \). Write the integrand as

\[
(2e^{-2\pi izt} - e^{2\pi iz(1-t)} - e^{2\pi iz(-1-t)}) \left(\frac{4\pi^2 z^2}{2} \right)^{-1} = g_1(z) - g_2(z) - g_3(z)
\]

where \(g_1(z) = \frac{2e^{-2\pi izt}}{4\pi^2 z^2} \),

\[
g_2(z) = \frac{e^{2\pi iz(1-t)}}{4\pi^2 z^2},
\]

\[
g_3(z) = \frac{e^{2\pi iz(-1-t)}}{4\pi^2 z^2}.
\]

Let \(C^{-}_R \) denote the semicircle of radius \(R \) from \(R \) to \(-R \) via \(-iR\) and let \(C^+_R \) denote the semicircle of radius \(R \) from \(-R \) to \(R \) via \(iR\). Then the \(g_j \) are analytic on and inside the contour \(L(R, \varepsilon) + C^+_R \). Moreover when \(t \geq 0 \), \(\int_{C_R^{-}} g_1(z)dz \) and \(\int_{C_R^{-}} g_3(z)dz \) both \(\to 0 \) as \(R \to \infty \), and likewise for \(\int_{C_R^{-}} g_2(z)dz \) when \(t \geq 1 \). Thus in each case, by Cauchy’s theorem, \(\int_{L(R, \varepsilon)} g_j(z)dz \to 0 \) as \(R \to \infty \). When \(0 \leq t < 1 \), \(g_2(z) \) is analytic in \(\mathbb{C} \) except at \(z = 0 \) where it has a double pole with residue \(\frac{t-1}{2\pi i} \). Moreover \(\int_{C_R^{+}} g_2(z)dz \to 0 \) as \(R \to \infty \). Thus, by the residue theorem, \(\int_{L(R, \varepsilon)} g_2(z)dz \to -1 \) as \(R \to \infty \).

The inverse transform is

\[
\int_{-\infty}^{\infty} \left(1 + t/X \right) e(xt)dt + \int_{0}^{\infty} \left(1 - t/X \right) e(xt)dt
\]

and these integrals are easily computed by integrating by parts.

3. Prove that (i) \(\exp(-x^2) \) belongs to the Schwartz class but that (ii) \(\frac{1}{1+x^2} \) and (iii) \(\exp(-|x|) \) do not.

(i) It is easily proved by induction on \(k \) that \(\frac{d^k}{dx^k} \exp(-x^2) = P_k(x) \exp(-x^2) \) where \(P_k(x) \) is a polynomial of degree \(k \). Hence, for any pair of non–negative integers \(j, k \), \(x^j \frac{d^k}{dx^k} \exp(-x^2) \to 0 \) as \(|x| \to \infty \). (ii) \(e^{-|x|} \) is not differentiable at \(x = 0 \). (iii) \(x^2(1+x^2)^{-1} \not\to 0 \) as \(|x| \to \infty \) (for example).