1. Suppose that \(\{u_n\} \) is uniformly distributed (mod 1), and let \(c \) be a real number. Put \(v_n = u_n + c \). Show that \(\{v_n\} \) is uniformly distributed.

2. Let \(\alpha_n = \log n - \lfloor \log n \rfloor \)
 (a) Show that
 \[
 \limsup_{N \to \infty} \frac{1}{N} \text{card}\{n : 1 \leq n \leq N, \alpha_n \in [0, 1/2]\} = \frac{e - e^{1/2}}{e - 1}.
 \]

 (b) Show that
 \[
 \liminf_{N \to \infty} \frac{1}{N} \text{card}\{n : 1 \leq n \leq N, \alpha_n \in [0, 1/2]\} = \frac{e^{1/2} - 1}{e - 1}.
 \]

 (c) Show that
 \[
 \frac{1}{N} \sum_{n=1}^{N} e^{(k \log n)} = \frac{N^{2 \pi i k}}{2 \pi i k + 1} + O\left(\frac{|k|}{N}\right).
 \]
 Hint: Try comparing the sum on the left with the corresponding integral.

 (d) Show that the sequence \(\{\alpha_n\} \) is not uniformly distributed (mod 1).

3. Suppose that the sequence \(\alpha_n \) satisfies \(\lim_{n \to \infty} (\alpha_{n+1} - \alpha_n) = \beta \). Prove that if \(\beta \in \mathbb{R} \setminus \mathbb{Q} \) then \(\alpha_n \) is uniformly distributed modulo 1. Hint: Consider \(\sum_{m=1}^{n} e^{(h \alpha_{m+1})} \).