These exercises are essentially the same as in the text, so I have included a cross reference.

1. §1.1. Exercise 2. Prove that if \(f_1, f_2 \ldots \) are real continuous functions of \(\mathbb{R} \) and if for each \(x \in \mathbb{R} \) we have \(\lim_{n \to \infty} f_n(x) \) exists, then \(A = \{ x : 0 \leq f(x) < 1 \} \) is measurable. Hint: Prove that \(A = \bigcup_{k \geq 1} \bigcup_{m \geq 1} \bigcap_{n \geq m} \{ x : f_n(x) \leq 1 - 1/k \} \).

2. §1.2. Exercise 2. Check that for fixed \(\beta \), the inner product \((\alpha, \beta) \) is a continuous function of \(\alpha \).

3. §1.3. Exercise 9. For \(x \in [0, 1] \) define the Haar function \(e^k_n \) by \(e^k_n(x) = 1 \) and, when \(n \geq 0, 1 \leq k \leq 2^n \), by

\[
 e^k_n(x) = \begin{cases}
 2^{n/2} & \text{when } k - 1 \leq 2^n x < k - 0.5, \\
 -2^{n/2} & \text{when } k - 0.5 \leq 2^n x < k, \\
 0 & \text{otherwise}.
 \end{cases}
\]

Prove that they form a unit–perpendicular basis for \(L^2[0, 1] \). Hint: One route to showing that they span is first to show that if \(f \) is perpendicular to them all, then \(\int_0^x f = 0 \) for all \(x \) of the form \(k2^{-n} \), and deduce that \(\int_B f = 0 \) for every measurable \(B \subset [0, 1] \).

4. §1.3. Exercise 14. Show that the family \(\{ f_n \} \) spans \(L^2(Q) \) iff \((f, f_n) = 0 \) for every \(n \) implies \(f \equiv 0 \). Hint: What is the annihilator of the family?