The first exam is on Wednesday 6th October, at 9:05 in 100 Boucke.

1. (i) Find the absolute value of \(\frac{(3+4i)(-1+2i)}{(-1-i)(3-i)} \). \(\left| \frac{(3+4i)(-1+2i)}{(-1-i)(3-i)} \right| = \frac{|3+4i||-1+2i|}{|-1-i||3-i|} = \sqrt{\frac{(3^2+4^2)(1^2+2^2)}{(1^2+1^2)(3^2+1^2)}} = \sqrt{\frac{25.5}{2.10}} = \frac{5}{2}. \) (ii) Show that if \(a \neq 0 \), then \(\frac{1}{a} = \frac{\bar{a}}{|a|^2} \), and find the real part of \(\frac{4-3i}{1+i} \). Two solutions to first part. (1) Let \(a = u + iv \) where \(u \) and \(v \) are real. Then \(a^{-1} = u/(u^2 + v^2) - iv/(u^2 + v^2) = (u - iv)/(u^2 + v^2) = \bar{a}/|a|^2 \). (2) We have \(|a|^2 = a\bar{a} \), and \(|a| = 0 \) iff \(a = 0 \). Thus \(|a| \neq 0 \). Hence we can divide both sides of this by \(a|a|^2 \). \(\Re \left(\frac{4-3i}{1+i} \right) = \Re \left(\frac{(4-3i)(-1-i)}{-1+i} \right) = \Re \left(-\frac{7-i}{2} \right) = -\frac{7}{2} \).

2. Find the image under the Möbius transformation \(z \mapsto w : w = \frac{z-1}{z+1} \), of (a) the circle \(|z+2| = 1 \), (b) the line \(\Re z = 3z \). The inverse is given by \(z = \frac{-w-1}{w-1} \). (a) This is the set of points \(w \) such that \(1 = \left| \frac{w-2}{w-1} \right| \) and so is a straight line, through the points \(w = 2 \) and \(w = 2 + i \). (b) Another way of writing the line is as the set of \(z \) such that \(|z+1-i| = |z-1+i| \). Substituting for \(w \) gives the set of \(w \) such that \(\left| \frac{w-1-2i}{w+i(2+i)/5} \right| = \sqrt{5} \).

3. Sketch the set of points \(z \) determined by the given condition. (a) \(|z-1-i| \neq |z+1+i| \), (b) \(|z-i-2| > 3 \). Which, if any, of these sets are regions? (a) Two half planes separated by the straight line through 0 and \(-1+i\). A union of two disjoint subsets, so not connected, so not a region. (b) Open annulus centred at \(2+i \) and inner radius 3, extending to \(\infty \). Polynomially connected, so connected.

4. (a) Prove that \(\{ z : 0 < \Re z < 1 \} \) is an open set in \(\mathbb{C} \). (b) Prove that if \(S \) and \(T \) are closed sets in \(\mathbb{C} \), then so is \(S \cup T \). (a) Let \(S = \{ z : 0 < \Re z \leq 0 \} \) and let \(z \in S \). Let \(\delta = \min \{ \Re z, 1-\Re z \} \). Now let \(w \in D(z, \delta) \). Then \(|\Re w - \Re z| \leq |w-z| < \delta \), and so \(\Re w = \Re z + (\Re w - \Re z) > \Re z - \delta \geq \delta - \delta = 0 \) and \(\Re w = \Re z + (\Re w - \Re z) < \Re z + \delta \leq 1 - \delta + \delta = 1 \). Hence \(w \in S \) and so \(D(z, \delta) \subseteq S \). (b) Let \(U = S \cup T \) and use \(* \) to denote the complement with respect to \(\mathbb{C} \). Since \(S \) and \(T \) are closed, \(S^* \) and \(T^* \) are open. Let \(z \in U^* \). Then \(z \in S^* \) and \(z \in T^* \), and so there are \(r_1 > 0 \), \(r_2 > 0 \) such that \(D(z, r_1) \subseteq S^* \) and \(D(z, r_2) \subseteq T^* \). Let \(r = \min \{ r_1, r_2 \} \). Then \(D(z, r) \subseteq S^* \) and \(D(z, r) \subseteq T^* \) and so \(D(z, r) \subseteq S^* \cap T^* = U^* \). Hence \(U^* \) is open and thus \(U \) is closed.