Pareto Improving Segmentation of Multi-product Markets

Nima Haghpanah
joint with Ron Siegel

May 4, 2019
Market Segmentation

Firms can segment the market based on available data

- age, sex, location, browsing history, ...
Market Segmentation

Firms can segment the market based on available data
 ▶ age, sex, location, browsing history, ...

Effects of segmentation on consumers?
 ▶ Segmentation can harm consumers
 ▶ Can segmentation benefit consumers?
Does a Pareto Improving Segmentation Exist?
Does a Pareto Improving Segmentation Exist?

Menu

<table>
<thead>
<tr>
<th>Product</th>
<th>Bundle$_1$</th>
<th>Bundle$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Un-segmented market:

CS$_c$(c)

Segmented market:

\exists segmentation s.t.

CS$_c$(c, s) \geq CS$_c$(c)

for all c, & \exists c
Does a Pareto Improving Segmentation Exist?

Un-segmented market: $CS(c)$

Menu

<table>
<thead>
<tr>
<th>Product</th>
<th>$5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle$_1$</td>
<td>10</td>
</tr>
<tr>
<td>Bundle$_2$</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

consumer c
Does a Pareto Improving Segmentation Exist?

Un-segmented market: $CS(c)$
Does a Pareto Improving Segmentation Exist?

Un-segmented market: $CS(c)$

Segmented market: $CS(c, \text{segmentation})$

\exists segmentation s.t. $CS(c, \text{segmentation}) \geq CS(c)$ for all c, & $> CS(c)$ for some c
Does a Pareto Improving Segmentation Exist?

Un-segmented market: \(CS(c) \)

Segmented market: \(CS(c, s) \)

\(\exists \text{ segmentation s.t. } CS(c, s) \geq CS(c) \text{ for all } c, \quad \& \quad > \text{ for some } c \)
A Single Product Example (with Unit Demands)

“Market”: \[1 - q \quad q \]
\[\bullet \quad \bullet \]
Valuation \(v \): 1 2
A Pareto Improving (PI) segmentation exists if market q is inefficient.

```
"Market": 1 - q  q
  ●  ●
Valuation $v$: 1  2
```
A Single Product Example (with Unit Demands)

A Pareto Improving (PI) segmentation exists if market q is inefficient

- $q \in (0.5, 1)$

“Market”:

<table>
<thead>
<tr>
<th></th>
<th>1 - q</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Valuation v:

| | 1 | 2 |

Holds with any number of valuations $1 - q_1 q_2$
A Single Product Example (with Unit Demands)

A Pareto Improving (PI) segmentation exists if market q is inefficient

- $q \in (0.5, 1)$

```
“Market” : 1 - q    q
     ●   ●
Valuation \( v \) : 1    2
```

Optimal price:
```
\begin{align*}
\text{All markets:} & \quad 0 \quad 0.5 \quad 1 \\
\text{1} & \quad 2
\end{align*}
```

Surplus q of $v = 0.5$ to 1.
A Single Product Example (with Unit Demands)

A Pareto Improving (PI) segmentation exists if market q is inefficient

- $q \in (0.5, 1)$

“Market”: $1 - q$ q

Valuation v: 1 2

Optimal price: 1 2

All markets:

Surplus of $v = 2$
A Single Product Example (with Unit Demands)

A Pareto Improving (PI) segmentation exists if market q is inefficient

- $q \in (0.5, 1)$: Segment to $q' \leq 0.5$ and $q'' > q$

```
“Market”: 1 − q   q
Valuation v: 1   2
```

```
Optimal price:

All markets:

Surplus of $v = 2$
```

```
Surplus 1
```

```
0  0.5  1
q'  q  q''
```
A Single Product Example (with Unit Demands)

A Pareto Improving (PI) segmentation exists if market \(q \) is inefficient

- \(q \in (0.5, 1) \): Segment to \(q' \leq 0.5 \) and \(q'' > q \)
- Holds with any number of valuations

“Market”: \(1 - q \quad q \)

Valuation \(v \): \(1 \quad 2 \)

Optimal price:

All markets:

Surplus of \(v = 2 \)
Screening Example: Qualities L and H

“Market”:

<table>
<thead>
<tr>
<th>$1 - q$</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

v_H: 1 2

v_L: 0.75 1
Screening Example: Qualities \(L \) and \(H \)

PI segmentation \(\not\exists \) for inefficient market \(q = 0.75 \)

```
"Market": 1 - q  q
  ●  ●
\( v_H: \)  1  2
\( v_L: \)  0.75  1
```
Screening Example: Qualities L and H

Pl segmentation $\not\subset$ for inefficient market $q = 0.75$

"Market":

ν_H: 1 2

ν_L: 0.75 1

$p(H) = \begin{cases} 1 & 1.75 \\ 0.75 & 2 \end{cases}$

$p(L) = \begin{cases} 0 & 0.25 \\ 0.75 & 1 \end{cases}$

q
Screening Example: Qualities L and H

PI segmentation $\not\exists$ for inefficient market $q = 0.75$

"Market": \begin{align*}
1 - q & \quad q \\
\bullet & \quad \bullet
\end{align*}

v_H: \begin{align*}
1 & \quad 2 \\
\circ & \quad \circ
\end{align*}

v_L: \begin{align*}
0.75 & \quad 1
\end{align*}

\begin{align*}
p(H) &= \frac{1}{1.75} \quad \frac{1.75}{2} \\
p(L) &= \frac{0.75}{1.75} \quad \frac{1}{2}
\end{align*}

Surplus of high type:
- 0.25
- 1

q: \begin{align*}
0 & \quad 0.25 & \quad 0.75 & \quad 1 \\
\circ & \quad \circ & \quad \circ
\end{align*}
Screening Example: Qualities L and H

PI segmentation $\not\exists$ for inefficient market $q = 0.75$

```
"Market": 1 - q  
q  
\[ \bullet \]  
\[ \bullet \]  
\[ v_H: \]
1 2
\[ v_L: \]
0.75 1
```

```
\[
p(H) = \begin{cases} 
1 & q = 0.75 \\
1.75 & q = 0.25 \\
2 & q = 0.25 \\
0.75 & q = 0.75 \\
\end{cases}
\]
```

```
\[
p(L) = \begin{cases} 
0.75 & q = 0.75 \\
0.75 & q = 0.25 \\
1 & q = 0.25 \\
1.75 & q = 0.75 \\
\end{cases}
\]
```

Surplus of high type

```
\[
\begin{cases} 
1 & q = 0.75 \\
0.25 & q = 0.25 \\
\end{cases}
\]
```
Screening Example: Qualities L and H

PI segmentation $\not\exists$ for inefficient market $q = 0.75$

<table>
<thead>
<tr>
<th>“Market”</th>
<th>$1 - q$</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_H</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>v_L</td>
<td>0.75</td>
<td>1</td>
</tr>
</tbody>
</table>

$p(H) = \frac{1}{1.75}$ for $q \in [0, 0.25)$ and $p(H) = 1$ for $q \in [0.75, 1]$

$p(L) = \frac{1}{0.25 - 0.75}$ for $q \in [0.25, 0.75)$ and $p(L) = 0.75$ for $q \in [0.75, 1]$

Surplus of high type:
- $q' = 0.25$ with surplus 1
- $q'' = 0.75$ with surplus 0.25
Screening Example: Qualities L and H

PI segmentation $\not\exists$ for inefficient market $q = 0.75$

"Market": $1 - q \quad q$

v_H: $1 \quad 2$

v_L: $0.75 \quad 1$

$p(H) = \begin{cases} 1 & 1.75 & 2 \\ 0.75 & 0.25 & 0.75 \end{cases}$

$p(L) = \begin{cases} 0.75 & 0.25 & 0.75 \end{cases}$

Surplus of high type

$1 \quad 0.25$

$q' \quad 0.25 \quad q' \cdot 1$
Screening Example: Qualities L and H

PI segmentation $\not\exists$ for inefficient market $q = 0.75$

- PI segmentation exists for all but one inefficient markets

```
Surplus of high type
```

```
\begin{align*}
\text{"Market" :} & \quad 1 - q \quad q \\
\nu_H : & \quad 1 \quad 2 \\
\nu_L : & \quad 0.75 \quad 1 \\
\end{align*}
```

```
\begin{align*}
p(H) &= \frac{1}{2} \\
p(L) &= \frac{1}{2} \\
\end{align*}
```

```
\begin{align*}
p(H) &= \begin{cases} 1 & q = 0.75 \\ 1.75 & \text{otherwise} \end{cases} \\
p(L) &= \begin{cases} 0.75 & q = 0.75 \\ 0.25 & \text{otherwise} \end{cases}
\end{align*}
```

```
\begin{align*}
1 - q & \quad q \\
\nu_H & \quad 1 \quad 2 \\
\nu_L & \quad 0.75 \quad 1 \\
p(H) & \quad 1 \quad 1.75 \\
p(L) & \quad 0.75 \quad 0.25 \\
\end{align*}
```

```
\begin{align*}
\frac{1}{2} \quad \frac{1}{2} \\
\frac{1}{2} \quad \frac{1}{2} \\
\end{align*}
```

```
\begin{align*}
\frac{1}{2} \quad \frac{1}{2} \\
\frac{1}{2} \quad \frac{1}{2} \\
\end{align*}
```

```
\begin{align*}
\frac{1}{2} \quad \frac{1}{2} \\
\frac{1}{2} \quad \frac{1}{2} \\
\end{align*}
```
Screening Example: Qualities L and H

PI segmentation $\not\exists$ for inefficient market $q = 0.75$

- PI segmentation exists for all but one inefficient markets

Two types, any $\#$ of qualities (characterize optimal mechanisms)

- PI segmentation exists for all but finitely many inefficient markets

\[
\begin{align*}
\text{"Market"}: & \quad 1 - q & q \\
\nu_H: & \quad 1 & 2 \\
\nu_L: & \quad 0.75 & 1 \\
\end{align*}
\]

\[
\begin{align*}
p(H) &= \begin{cases}
1 & q = 0.75 \\
1.75 & q = 2 \\
2 & q = 1
\end{cases} \\
p(L) &= \begin{cases}
0.75 & q = 0.25 \\
1 & q = 0 \\
1 & q = 0.75 \\
1 & q = 1
\end{cases}
\end{align*}
\]

Surplus of high type

\[
\begin{align*}
\text{Surplus of high type:} & \\
q: & 0 & 0.25 & 0.75 & 1 \\
\end{align*}
\]
Model

- **Types:** \(t \in T \) (finite)
- **Alternatives:** \(a \in A \) (finite)
 - e.g., qualities, quantities, configurations
 - e.g., bundles: \(\{1\}, \{2\}, \{1, 2\} \)
- **Valuations:** \(\nu(t, a) \)
- **Costs:** \(c(a) \)
Model

- **Types:** \(t \in T \) (finite)
- **Alternatives:** \(a \in A \) (finite)
 - e.g., qualities, quantities, configurations
 - e.g., bundles: \(\{1\}, \{2\}, \{1, 2\} \)
- **Valuations:** \(\nu(t, a) \)
- **Costs:** \(c(a) \)

Mechanism: \(a : T \to \Delta(A), \ p : T \to R \)
- **IC:** \(E[\nu(t, a(t))] - p(t) \geq E[\nu(t, a(t'))] - p(t') \)
- **IR:** \(E[\nu(t, a(t))] - p(t) \geq 0 \)
Markets and Segmentations

Market $f \in \Delta(T)$

- Mechanism optimal if maximizes $E_f[p(t) - c(t)]$
- $CS(t, f)$: surplus of type t in “the” optimal mechanism for market f
 - (fix arbitrary selection rule when multiple optimal mechanisms)
Markets and Segmentations

Market $f \in \Delta(T)$

- Mechanism optimal if maximizes $E_f[p(t) - c(t)]$
- $CS(t, f)$: surplus of type t in “the” optimal mechanism for market f
 - (fix arbitrary selection rule when multiple optimal mechanisms)

Segmentation μ of f: $\mu \in \Delta(\Delta(T))$ s.t. $E_\mu[f'(t)] = f(t), \forall t$

- e.g., two types, $E_\mu[q'] = q$
Markets and Segmentations

Market $f \in \Delta(T)$

- Mechanism optimal if maximizes $E_f[p(t) - c(t)]$
- $CS(t, f)$: surplus of type t in “the” optimal mechanism for market f
 - (fix arbitrary selection rule when multiple optimal mechanisms)

Segmentation μ of f: $\mu \in \Delta(\Delta(T))$ s.t. $E_\mu[f'(t)] = f(t), \forall t$

- e.g., two types, $E_\mu[q'] = q$

Segmentation μ of f is Pareto improving if

1. $\forall f' \in Supp(\mu): \forall t \in Supp(f'), CS(t, f') \geq CS(t, f)$
2. $\exists f' \in Supp(\mu): \exists t \in Supp(f'), >$
Markets and Segmentations

Market $f \in \Delta(T)$

- Mechanism optimal if maximizes $E_f[p(t) - c(t)]$
- $CS(t, f)$: surplus of type t in “the” optimal mechanism for market f
 - (fix arbitrary selection rule when multiple optimal mechanisms)

Segmentation μ of f: $\mu \in \Delta(\Delta(T))$ s.t. $E_\mu[f'(t)] = f(t), \forall t$

- e.g., two types, $E_\mu[q'] = q$

Segmentation μ of f is Pareto improving if

1. $\forall f' \in Supp(\mu): \forall t \in Supp(f'), CS(t, f') \geq CS(t, f)$
2. $\exists f' \in Supp(\mu): \exists t \in Supp(f'), >$

($f' \succ CS f$ if 1 and 2)
Main Result: PI Segmentations Exist?

Recall: If \(\exists \) PI segmentation of \(f \) \(\Rightarrow \) \(f \) is inefficient

\[(\exists t, a(t)/\in\arg\max a'(v(t), a'(t)) - c(a'(t))) \]

Theorem

For almost all inefficient markets, PI segmentations exist.

\(\{f: f \text{ inefficient } \&\, \neg\exists \text{ PI segmentation}\} \subseteq \text{a finite union of hyperplanes} \)

\[H(a) = \{f | \sum_{t} a(t) \cdot f(t) = 0 \} \quad (a(t) \neq 0 \text{ for some } t) \]

Surplus of high type 0.25

\[q_{0.25} = 0.75 \]

\[q_{0.75} = 1 \]

\[q_{1} = 1.25 \]

\[q_{1.25} = 0.75 / 15 \]
Main Result: PI Segmentations Exist?

Theorem
For almost all inefficient markets, PI segmentations exist.

\[\{ f : f \text{ inefficient } \& \neg \exists \text{ PI segmentation} \} \subseteq \bigcup \text{finite union of hyperplanes} \]

\[H(a) = \{ f | \sum t a(t) \cdot f(t) = 0 \} \quad (a(t) \neq 0 \text{ for some } t) \]

Surplus \(q \) of high type 0.25 / 0.75 1 / 1.25 8 / 15
Main Result: PI Segmentations Exist?

Recall: If \exists PI segmentation of $f \Rightarrow f$ is inefficient

- $(\exists t, a(t) \not\in \arg \max_{a'} v(t, a') - c(a'))$
Main Result: PI Segmentations Exist?

Recall: If \exists PI segmentation of $f \Rightarrow f$ is inefficient

$\Rightarrow (\exists t, a(t) \notin \arg \max_{a'} v(t, a') - c(a'))$

Theorem

For almost all inefficient markets, PI segmentations exist.
Main Result: PI Segmentations Exist?

Recall: If \exists PI segmentation of $f \Rightarrow f$ is inefficient
- $(\exists t, a(t) \not\in \arg \max_{a'} v(t, a') - c(a'))$

Theorem

For almost all inefficient markets, PI segmentations exist.

$\{f : f \text{ inefficient } \& \not\exists \text{ PI segmentation}\} \subseteq$ a finite union of hyperplanes
- $H(a) = \{f | \sum_t a(t) \cdot f(t) = 0\} (a(t) \neq 0$ for some $t)$
Main Result: PI Segmentations Exist?

Recall: If \(\exists \) PI segmentation of \(f \) \(\Rightarrow \) \(f \) is inefficient

\[(\exists t, a(t) \notin \text{arg max}_{a'} \, v(t, a') - c(a')) \]

Theorem

For almost all inefficient markets, PI segmentations exist.

\[\{ f : f \text{ inefficient} \& \not\exists \text{ PI segmentation} \} \subseteq \text{a finite union of hyperplanes} \]

\[H(a) = \{ f | \sum_t a(t) \cdot f(t) = 0 \} \quad (a(t) \neq 0 \text{ for some } t) \]
Main Result: PI Segmentations Exist?

Recall: If \exists PI segmentation of $f \Rightarrow f$ is inefficient

$\exists t, a(t) \not\in \arg\max_{a'} v(t, a') - c(a')$

Theorem

For almost all inefficient markets, PI segmentations exist.

$f : f$ inefficient & $\not\exists$ PI segmentation \subseteq a finite union of hyperplanes

$H(a) = \{f | \sum_t a(t) \cdot f(t) = 0\}$ ($a(t) \neq 0$ for some t)
Main Result: PI Segmentations Exist?

Recall: If \(\exists \) PI segmentation of \(f \) \(\Rightarrow \) \(f \) is inefficient

- \((\exists t, a(t) \not\in \arg \max_{a'} v(t, a') - c(a')) \)

Theorem

For almost all inefficient markets, PI segmentations exist.

\(\{ f : f \text{ inefficient } \& \not\exists \text{ PI segmentation} \} \subseteq \text{a finite union of hyperplanes} \)

- \(H(a) = \{ f | \sum_t a(t) \cdot f(t) = 0 \} \) (\(a(t) \neq 0 \) for some \(t \))
Proof Outline

Given inefficient market f

1. $\exists f_1$ s.t. $f_1 \succ_{CS} f$
 - $\forall t \in \text{Supp}(f_1) : CS(t, f') \geq CS(t, f), (\exists t, >)$

Define f_2 s.t. $f = \epsilon f_1 + (1 - \epsilon) f_2$

2. Small ϵ, generic f: $\text{OptMech}(f) = \text{OptMech}(f_2)$
Step 1: Every Inefficient Market Is Dominated

Lemma

If f is inefficient, then there exists an efficient f_1 s.t. $f_1 \succ_{CS} f$.

Intuition: allocation of t is distorted to extract rents from $v(t, \bar{a})$.
Step 1: Every Inefficient Market Is Dominated

Lemma

If f is inefficient, then there exists an efficient f_1 s.t. $f_1 \succ_{CS} f$.

Assume: 1. $c = 0$ 2. $\exists t \forall a, v(t, a) < v(t, a)$ 3. $\exists \bar{a} \forall t, v(t, a) < v(t, \bar{a})$
Step 1: Every Inefficient Market Is Dominated

Lemma

If f is inefficient, then there exists an efficient f₁ s.t. f₁ ≻_{CS} f.

Assume: 1. \(c = 0 \) 2. \(\exists t \, \forall a, v(t, a) < v(t, a) \) 3. \(\exists \bar{a} \, \forall t, v(t, a) < v(t, \bar{a}) \)
Step 1: Every Inefficient Market Is Dominated

Lemma

If f is inefficient, then there exists an efficient f_1 s.t. $f_1 \succ_{CS} f$.

Assume: 1. $c = 0$ 2. $\exists t \forall a, v(t, a) < v(t, a)$ 3. $\exists \bar{a} \forall t, v(t, a) < v(t, \bar{a})$
Step 1: Every Inefficient Market Is Dominated

Lemma

If f is inefficient, then there exists an efficient f_1 s.t. $f_1 \succ_{CS} f$.

Assume: 1. $c = 0$ 2. $\exists t \forall a, v(t, a) < v(t, \bar{a})$ 3. $\exists \bar{a} \forall t, v(t, a) < v(t, \bar{a})$

1. Some type t is assigned \bar{a}
2. Type t pays strictly more than $v(t, \bar{a})$
3. $f_1(t) = 1 - \delta, f_1(t) = \delta$ for small enough δ
 - optimal to sell \bar{a} at price $v(t, \bar{a})$
Step 1: Every Inefficient Market Is Dominated

Lemma

If \(f \) is inefficient, then there exists an efficient \(f_1 \) s.t. \(f_1 \succ_{CS} f \).

Assume:
1. \(c = 0 \)
2. \(\exists t \forall a, v(t, a) < v(t, \bar{a}) \)
3. \(\exists \bar{a} \forall t, v(t, a) < v(t, \bar{a}) \)

1. Some type \(t \) is assigned \(\bar{a} \)
2. Type \(t \) pays strictly more than \(v(t, \bar{a}) \)
3. \(f_1(t) = 1 - \delta, f_1(t) = \delta \) for small enough \(\delta \)
 - optimal to sell \(\bar{a} \) at price \(v(t, \bar{a}) \)

\[
\begin{array}{c}
\text{v(\cdot, a)} \\
\text{v(\cdot, \bar{a})}
\end{array}
\]
Step 1: Every Inefficient Market Is Dominated

Lemma

If \(f \) is inefficient, then there exists an efficient \(f_1 \) s.t. \(f_1 \succeq_{CS} f \).

Assume: 1. \(c = 0 \) 2. \(\exists t \forall a, v(t, a) < v(t, \bar{a}) \) 3. \(\exists \bar{a} \forall t, v(t, a) < v(t, \bar{a}) \)

1. Some type \(t \) is assigned \(\bar{a} \)
2. Type \(t \) pays strictly more than \(v(t, \bar{a}) \)
3. \(f_1(t) = 1 - \delta, f_1(t) = \delta \) for small enough \(\delta \)
 - optimal to sell \(\bar{a} \) at price \(v(t, \bar{a}) \)

Intuition: allocation of \(t \) distorted to extract rents from \(t \)
Step 1, General Proof Idea

In addition to types 2 and 3, include all other types in the "chain of information rents".
Step 1, General Proof Idea

\[p(a_1) \]

\[p(a_2) \]

market \(f \):

\[v(\cdot, a_2) \]

\[v(\cdot, a_1) \]

\[3 \cdot a_2 \]

\[2 \cdot a_1 \]

\[1 \cdot a_1 \]

In addition to types 2 and 3 include all other types in the "chain of information rents".

Final step: ensure mechanism is optimal for some market.
Step 1, General Proof Idea

![Diagram showing a market with points labeled 1, 2, and 3, representing a general proof idea involving sets $p(a_1)$ and $p(a_2)$, and $v(\cdot, a_1)$ and $v(\cdot, a_2)$.]
Step 1, General Proof Idea

\[\exists \, \text{market } f: \]

\[v(\cdot, a_2) \]

\[p(a_2) \]

\[v(\cdot, a_1) \]

\[p(a_1) \]

In addition to types 2 and 3 include all other types in the "chain of information rents".

Final step: ensure mechanism is optimal for some market.
Step 1, General Proof Idea

In addition to types 2 and 3 include all other types in the "chain of information rents".

Final step: ensure mechanism is optimal for some market f.

$\exists ?$ market f_1:

$\nu(\cdot, a_2)$

$\nu(\cdot, a_2)$

$\nu(\cdot, a_1)$

$\nu(\cdot, a_1)$

$p(a_2)$

$p(a_2)$

$p(a_1)$

$p(a_1)$
Step 1, General Proof Idea

In addition to types 2 and 3

- include all other types in the "chain of information rents"
Step 1, General Proof Idea

In addition to types 2 and 3

- include all other types in the “chain of information rents”

Final step: ensure mechanism is optimal for some market f_1
Recall Proof Outline

Given inefficient market f

1. $\exists f_1 \text{ s.t. } f_1 \succ_{CS} f \checkmark$
 - $\forall t \in \text{Supp}(f_1): CS(t, f') \geq CS(t, f), (\exists t, >)$

Define f_2 s.t. $f = \epsilon f_1 + (1 - \epsilon)f_2$

2. Small ϵ, generic f: OptMech(f) = OptMech(f_2)
Step 2: Small Perturbation Preserves Optimal Mechanisms

\[f = (1 - \epsilon)f_1 + \epsilon f_2 \]
Step 2: Small Perturbation Preserves Optimal Mechanisms

\[f = (1 - \epsilon)f_1 + \epsilon f_2 \]

Lemma

Fix any \(f_1 \). For generic \(f \), there exists \(\epsilon \) small enough such that

\[\text{OptMech}(f) = \text{OptMech}(f_2) \]
Step 2: Small Perturbation Preserves Optimal Mechanisms

\[f = (1 - \epsilon)f_1 + \epsilon f_2 \]

Lemma

Fix any \(f_1 \). For generic \(f \), there exists \(\epsilon \) small enough such that

\[\text{OptMech}(f) = \text{OptMech}(f_2) \]

The set of all IC & IR mechanisms \((a, p)\) is a polytope

- The set of all payment rules is a projection (thus a polytope itself)
Step 2: Small Perturbation Preserves Optimal Mechanisms

\[f = (1 - \epsilon)f_1 + \epsilon f_2 \]

Lemma

Fix any \(f_1 \). For generic \(f \), there exists \(\epsilon \) small enough such that

\[\text{OptMech}(f) = \text{OptMech}(f_2) \]

The set of all IC & IR mechanisms \((a, p)\) is a polytope

- The set of all payment rules is a projection (thus a polytope itself)
Step 2: Small Perturbation Preserves Optimal Mechanisms

\[f = (1 - \epsilon)f_1 + \epsilon f_2 \]

Lemma

Fix any \(f_1 \). For generic \(f \), there exists \(\epsilon \) small enough such that

\[\text{OptMech}(f) = \text{OptMech}(f_2) \]

The set of all IC & IR mechanisms \((a, p)\) is a polytope

- The set of all payment rules is a projection (thus a polytope itself)
Step 2: Small Perturbation Preserves Optimal Mechanisms

\[f = (1 - \epsilon)f_1 + \epsilon f_2 \]

Lemma

Fix any \(f_1 \). For generic \(f \), there exists \(\epsilon \) small enough such that

\[\text{OptMech}(f) = \text{OptMech}(f_2) \]

The set of all IC & IR mechanisms \((a, p)\) is a polytope

- The set of all payment rules is a projection (thus a polytope itself)
Step 2: Small Perturbation Preserves Optimal Mechanisms

\[f = (1 - \epsilon)f_1 + \epsilon f_2 \]

Lemma

Fix any \(f_1 \). For generic \(f \), there exists \(\epsilon \) small enough such that

\[\text{OptMech}(f) = \text{OptMech}(f_2) \]

The set of all IC & IR mechanisms \((a, p)\) is a polytope

- The set of all payment rules is a projection (thus a polytope itself)
Step 2: Small Perturbation Preserves Optimal Mechanisms

\[f = (1 - \epsilon)f_1 + \epsilon f_2 \]

Lemma

Fix any \(f_1 \). For generic \(f \), there exists \(\epsilon \) small enough such that

\[\text{OptMech}(f) = \text{OptMech}(f_2) \]

The set of all IC & IR mechanisms \((a, p)\) is a polytope

- The set of all payment rules is a projection (thus a polytope itself)
Recall Proof Outline

Given inefficient market f

1. $\exists f_1 \text{ s.t. } f_1 \succ_{CS} f \checkmark$
 ▶ $\forall t \in \text{Supp}(f_1) : CS(t, f') \geq CS(t, f), (\exists t, >)$

Define f_2 s.t. $f = \epsilon f_1 + (1-\epsilon)f_2$

2. Small ϵ, generic f: OptMech(f) = OptMech(f_2) \checkmark
Conclusions

There is scope for intervention:

- PI segmentations generically exist
- (do not exist for some markets)
- **Key idea:** Every inefficient market is dominated
Conclusions

There is **scope for intervention**:

- PI segmentations generically exist
- (do not exist for some markets)
- **Key idea**: Every inefficient market is dominated

Thanks!