When Is Pure Bundling Optimal?

Nima Haghpanah (Penn State)
Joint work with Jason Hartline (Northwestern)

October 26, 2018
Multi-product Monopolist’s Optimal Selling Strategy?

- Sell Separately
- Pure Bundling
- Mixed Bundling

This paper: When is Pure Bundling Optimal?
Multi-product Monopolist’s Optimal Selling Strategy?

- **Sell Separately:** Offer each product for a price
Multi-product Monopolist’s Optimal Selling Strategy?

- **Sell Separately:** Offer each product for a price
- **Pure Bundling:** Offer only the grand bundle of all products

![Logos](image)
Multi-product Monopolist’s Optimal Selling Strategy?

- **Sell Separately:** Offer each product for a price
- **Pure Bundling:** Offer only the grand bundle of all products
- **Mixed Bundling:** Offer a menu of bundles and prices
Multi-product Monopolist’s Optimal Selling Strategy?

- **Sell Separately:** Offer each product for a price
- **Pure Bundling:** Offer only the grand bundle of all products
- **Mixed Bundling:** Offer a menu of bundles and prices

This paper: When is Pure Bundling Optimal?
The Model
The Model

Single seller, products 1 to k, single buyer
The Model

Single seller, products 1 to k, single buyer

- Bundle $b \subseteq \{1, \ldots, k\}$
- v_b value for bundle b
- Type $\nu = (v_b)_{b \subseteq \{1, \ldots, k\}}$
The Model

Single seller, products 1 to k, single buyer

- Bundle $b \subseteq \{1, \ldots, k\}$
- v_b value for bundle b
- Type $\nu = (v_b)_{b \subseteq \{1,\ldots,k\}} \sim \mu$
The Model

Single seller, products 1 to k, single buyer

- Bundle $b \subseteq \{1, \ldots, k\}$
- v_b value for bundle b
- Type $\nu = (v_b)_{b \subseteq \{1, \ldots, k\}} \sim \mu$

Mechanism:

- menu of (price, bundle)

<table>
<thead>
<tr>
<th>Price</th>
<th>Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>b'</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Model

Single seller, products 1 to \(k \), single buyer

- Bundle \(b \subseteq \{1, \ldots, k\} \)
- \(v_b \) value for bundle \(b \)
- Type \(\nu = (v_b)_{b \subseteq \{1, \ldots, k\}} \sim \mu \)

Mechanism:
- menu of (price, bundle)

<table>
<thead>
<tr>
<th>Price</th>
<th>Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4</td>
<td>(b)</td>
</tr>
<tr>
<td>$5</td>
<td>(b')</td>
</tr>
<tr>
<td>$4.5</td>
<td>lottery over (b, b')</td>
</tr>
</tbody>
</table>
The Model

Single seller, products 1 to k, single buyer

- Bundle $b \subseteq \{1, \ldots, k\}$
- v_b value for bundle b
- Type $\nu = (v_b)_{b \subseteq \{1, \ldots, k\}} \sim \mu$

Mechanism:

- menu of (price, bundle)

Pure Bundling Mechanism:

<table>
<thead>
<tr>
<th>Price</th>
<th>Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>b'</td>
</tr>
<tr>
<td>4.5</td>
<td>lottery over b, b'</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>${1, \ldots, k}$</td>
</tr>
</tbody>
</table>
Examples: Additive Values \(v_{1,2} = v_1 + v_2 \)
Examples: Additive Values $v_{1,2} = v_{1} + v_{2}$

Example 1: $(v_{1}, v_{2}) = \begin{cases} (0.8, 0.2) & \text{probability 0.5}, \\ (0.2, 0.8) & \text{probability 0.5}. \end{cases}$
Examples: Additive Values $v_{\{1,2\}} = v_{\{1\}} + v_{\{2\}}$

Example 1: $(v_{\{1\}}, v_{\{2\}}) = \begin{cases} (.8, .2) & \text{probability 0.5,} \\ (.2, .8) & \text{probability 0.5.} \end{cases}$

- Pure bundling optimal
Examples: Additive Values $v_{1,2} = v_1 + v_2$

Example 1: $\left(v_1, v_2 \right) = \begin{cases}
\left(.8, .2 \right) & \text{probability 0.5,} \\
\left(.2, .8 \right) & \text{probability 0.5.}
\end{cases}$

- Pure bundling optimal

Stigler ’63, Adams & Yellen ’76: Bundle if values negatively correlated
Examples: Additive Values \(v_{\{1,2\}} = v_{\{1\}} + v_{\{2\}} \)

Example 1: \((v_{\{1\}}, v_{\{2\}}) = \left\{ \begin{array}{c} (.8, .2) \text{ probability } 0.5, \\
(.2, .8) \text{ probability } 0.5. \end{array} \right. \)

- Pure bundling optimal

Example 2: \(v_{\{1\}}, v_{\{2\}} \text{ i.i.d } U[0, 1] \)

Stigler ’63, Adams & Yellen ’76: Bundle if values negatively correlated
Examples: Additive Values $\nu_{\{1,2\}} = \nu_1 + \nu_2$

Example 1: $(\nu_1, \nu_2) = \begin{cases} (.8, .2) \quad \text{probability } 0.5, \\ (.2, .8) \quad \text{probability } 0.5. \end{cases}$

- Pure bundling optimal

Example 2: ν_1, ν_2 i.i.d $U[0, 1]$

Sell Separately:

Stigler ’63, Adams & Yellen ’76: Bundle if values negatively correlated
Examples: Additive Values $v_{\{1,2\}} = v_{\{1\}} + v_{\{2\}}$

Example 1: $(v_{\{1\}}, v_{\{2\}}) = \left\{ \begin{array}{l} (.8, .2) \text{ probability 0.5}, \\ (.2, .8) \text{ probability 0.5}. \end{array} \right.$

- Pure bundling optimal

Example 2: $v_{\{1\}}, v_{\{2\}}$ i.i.d $U[0, 1]$

Stigler ’63, Adams & Yellen ’76: Bundle if values negatively correlated
Examples: Additive Values $v_{\{1,2\}} = v\{1\} + v\{2\}$

Example 1: $(v\{1\}, v\{2\}) = \{ (.8, .2) \text{ probability 0.5,} \newline (.2, .8) \text{ probability 0.5.} \}

- Pure bundling optimal

Example 2: $v\{1\}, v\{2\}$ i.i.d $U[0, 1]$

- Optimal:

<table>
<thead>
<tr>
<th>Price</th>
<th>Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86</td>
<td>{1, 2}</td>
</tr>
<tr>
<td>0.66</td>
<td>{1}</td>
</tr>
<tr>
<td>0.66</td>
<td>{2}</td>
</tr>
</tbody>
</table>

Mixed Bundling:

Stigler '63, Adams & Yellen '76: Bundle if values negatively correlated
Examples: Additive Values $v_{\{1,2\}} = v_{\{1\}} + v_{\{2\}}$

Example 1: $(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, \}
\\{ (.2, .8) \text{ probability } 0.5. \}

- Pure bundling optimal

Example 2: $v_{\{1\}}, v_{\{2\}} \text{ i.i.d } U[0, 1]$

- Optimal:

<table>
<thead>
<tr>
<th>Price</th>
<th>Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86</td>
<td>{1, 2}</td>
</tr>
<tr>
<td>0.66</td>
<td>{1}</td>
</tr>
<tr>
<td>0.66</td>
<td>{2}</td>
</tr>
</tbody>
</table>

Mixed Bundling:

Stigler ’63, Adams & Yellen ’76: Bundle if values negatively correlated
McAfee et al. ’89: Pure bundling generically not optimal
Special Case: Two Identical Products

Values (v_1, v_{gb}) \sim μ $\left(v_{gb} \neq 2v_1 \right)$

Mechanism:

Pure Bundling (PB) Mechanism:

Two Units $\$5$

One Unit $\$3$

Two Units $\$4$

Main Result:

μ PB optimal if v_1 / v_{gb} "stochastically nondecreasing" in v_{gb}

High v_{gb} implies high "relative utility"

μ PB not optimal if v_1 / v_{gb} "stochastically decreasing" in v_{gb}
Special Case: Two Identical Products

Values \((v_1, v_{gb}) \sim \mu\)

\(\text{(} v_{gb} \text{ need not } = 2v_1 \text{)}\)
Special Case: Two Identical Products

Values \((v_1, v_{gb}) \sim \mu\)

- \((v_{gb} \text{ need not } = 2v_1)\)

Mechanism:

- Pure Bundling (PB) Mechanism:
 - Two Units 5
 - One Unit 4

Main Result:
- PB optimal if \(v_1 / v_{gb}\) "stochastically nondecreasing" in \(v_{gb}\)
- High \(v_{gb}\) implies high "relative utility"
- PB not optimal if \(v_1 / v_{gb}\) "stochastically decreasing" in \(v_{gb}\)
Special Case: Two Identical Products

Values \((v_1, v_{gb}) \sim \mu\)

- \((v_{gb} \text{ need not } = 2v_1)\)

Mechanism:

\[
\begin{array}{c|c}
\text{\$5} & \text{Two Units} \\
\text{\$3} & \text{One Unit}
\end{array}
\]
Special Case: Two Identical Products

Values \((v_1, v_{gb}) \sim \mu\)

- \((v_{gb} \text{ need not } = 2v_1)\)

Mechanism:

Pure Bundling (PB) Mechanism:

- $5 \text{ Two Units}
- $3 \text{ One Unit}
- $4 \text{ Two Units}
Special Case: Two Identical Products

Values \((v_1, v_{gb}) \sim \mu\)

\(\bullet\) \((v_{gb} \text{ need not } = 2v_1)\)

Mechanism:

Pure Bundling (PB) Mechanism:

Main Result:
Special Case: Two Identical Products

Values \((v_1, v_{gb}) \sim \mu\)

- \((v_{gb} \text{ need not } = 2v_1)\)

Mechanism:

Pure Bundling (PB) Mechanism:

Main Result:

- PB optimal if \(\frac{v_1}{v_{gb}} \text{ “stochastically nondecreasing” in } v_{gb}\)
- PB not optimal if \(\frac{v_1}{v_{gb}} \text{ “stochastically decreasing” in } v_{gb}\)
Special Case: Two Identical Products

Values \((v_1, v_{gb}) \sim \mu\)

- \((v_{gb} \text{ need not } = 2v_1)\)

Mechanism:

Pure Bundling (PB) Mechanism:

Main Result:

- PB optimal if \(\frac{v_1}{v_{gb}} \text{ “stochastically nondecreasing” in } v_{gb}\)
 - High \(v_{gb}\) implies high “relative utility”

- PB not optimal if \(\frac{v_1}{v_{gb}} \text{ “stochastically decreasing” in } v_{gb}\)
Intuition

PB optimal if high v_{gb} implies high “relative utility” v_1/v_{gb}
Intuition

PB optimal if high v_{gb} implies high “relative utility” v_1/v_{gb}

$$v_1$$

$$v_{gb}$$

$$v_1$$

$$v_{gb}$$
Intuition

PB optimal if high v_{gb} implies high “relative utility” v_1/v_{gb}
Intuition

PB optimal if high v_{gb} implies high “relative utility” v_1/v_{gb}

\[v_1 \\
\downarrow \\
\begin{array}{c}
p \quad v_{gb} \\
\end{array} \]

\[v_1 \\
\downarrow \\
\begin{array}{c}
p \quad v_{gb} \\
\end{array} \]

\[p - \delta \\
\downarrow \\
\begin{array}{c}
p \quad v_{gb} \\
\end{array} \]
Intuition

PB optimal if high v_{gb} implies high “relative utility” v_1/v_{gb}
A Special Case: Types “on a Path”

\[\text{Ratio (relative utility)} r(v_{gb}) := \frac{v_1}{v_{gb}}; \text{ e.g., } r(v_{gb}) = \hat{r} \]

\[\text{Proposition} \]

Given "Path" \(V_1 \), \(PB \) is optimal \(\forall \mu \) iff \(r \) monotone nondecreasing.
A Special Case: Types “on a Path”

\[r(v_{gb}) = \frac{v_1}{v_{gb}}; \text{ e.g., } r(v_{gb}) = \hat{r} \]

Proposition

Given “Path” V_1, PB is optimal $\forall \mu$ iff r monotone nondecreasing.
A Special Case: Types “on a Path”

Ratio (relative utility) \(r(v_{gb}) := \frac{v_1}{v_{gb}} \)
A Special Case: Types “on a Path”

Ratio (relative utility) $r(v_{gb}) := v_1 / v_{gb}$; e.g., $r(v_{gb}) = \hat{r}$
A Special Case: Types “on a Path”

Ratio (relative utility) $r(v_{gb}) := v_1 / v_{gb}$
A Special Case: Types “on a Path”

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Proposition

Given “Path” V_1, PB is optimal $\forall \mu$ iff r monotone nondecreasing.
A Special Case: Types “on a Path”

Ratio (relative utility) \(r(v_{gb}) := \frac{v_1}{v_{gb}} \)

Proposition

Given “Path” \(V_1 \), PB is optimal \(\forall \mu \) iff \(r \) monotone nondecreasing.
A Special Case: Types “on a Path”

Ratio (relative utility) \(r(v_{gb}) := v_1 / v_{gb} \)

Proposition

Given “Path” \(V_1 \), PB is optimal \(\forall \mu \) iff \(r \) monotone nondecreasing.

Two types:

1. \(r' \geq r \): PB optimal \((\forall \mu) \)
A Special Case: Types “on a Path”

Ratio (relative utility) \(r(v_{gb}) := \frac{v_1}{v_{gb}} \)

Proposition

Given “Path” \(V_1 \), PB is optimal \(\forall \mu \) iff \(r \) monotone nondecreasing.

Two types:

1. \(r' \geq r \): PB optimal \(\forall \mu \)
2. \(r' < r \): PB not optimal \(\exists \mu \)
A Special Case: Types “on a Path”

Ratio (relative utility) \(r(v_{gb}) := \frac{v_1}{v_{gb}} \)

Proposition

Given “Path” \(V_1 \), PB is optimal \(\forall \mu \) iff \(r \) monotone nondecreasing.

Two types:

1. \(r' \geq r \): PB optimal \(\forall \mu \)
2. \(r' < r \): PB not optimal \(\exists \mu \)

\[v_{gb} = Pr[v']v'_{gb} \]
A Special Case: Types “on a Path”

Ratio (relative utility) \(r(v_{gb}) := \frac{v_1}{v_{gb}} \)

Proposition

Given “Path” \(V_1 \), \(PB \) is optimal \(\forall \mu \) iff \(r \) monotone nondecreasing.
A Special Case: Types “on a Path”

Ratio (relative utility) \(r(v_{gb}) := \frac{v_1}{v_{gb}} \)

Proposition

Given “Path” \(V_1 \), PB is optimal \(\forall \mu \) iff \(r \) monotone nondecreasing.

Stokey’79, Acquisti and Varian’05:

- PB optimal if \(r \) constant
Main Theorem (Two Identical Products)

Ratio (relative utility) $r := \frac{v_1}{v_{gb}}$

Theorem PB is optimal if r stochastically nondecreasing in v_{gb}.

Not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb}:

$\text{Pr}(r \geq \hat{r} | v_{gb})$ nondecreasing in v_{gb} (stochastic dominance)
Main Theorem (Two Identical Products)

Ratio (relative utility) \(r := \frac{v_1}{v_{gb}} \)

- \((r, v_{gb}) \sim \hat{\mu}\) instead of \((v_1, v_{gb}) \sim \mu\)
Main Theorem (Two Identical Products)

Ratio (relative utility) \(r := v_1/v_{gb} \)

- \((r, v_{gb}) \sim \hat{\mu} \) instead of \((v_1, v_{gb}) \sim \mu \)

Theorem

PB is

- **optimal** if \(r \) stochastically nondecreasing in \(v_{gb} \).
- **not optimal** if \(r \) stochastically decreasing in \(v_{gb} \).
Main Theorem (Two Identical Products)

Ratio (relative utility) \(r := \frac{v_1}{v_{gb}} \)

- \((r, v_{gb}) \sim \hat{\mu} \) instead of \((v_1, v_{gb}) \sim \mu\)

Theorem

PB is

- **optimal** if \(r \) stochastically nondecreasing in \(v_{gb} \).
- **not optimal** if \(r \) stochastically decreasing in \(v_{gb} \).

\(r \) stochastically nondecreasing in \(v_{gb} \):

- \(\text{Pr}(r \geq \hat{r} \mid v_{gb}) \) nondecreasing in \(v_{gb} \)
 (stochastic dominance)
Main Theorem (Two Identical Products)

Ratio (relative utility) \(r := \frac{v_1}{v_{gb}} \)

- \((r, v_{gb}) \sim \hat{\mu} \) instead of \((v_1, v_{gb}) \sim \mu \)

Theorem

PB is

- optimal if \(r \) stochastically nondecreasing in \(v_{gb} \).
- not optimal if \(r \) stochastically decreasing in \(v_{gb} \).

\(r \) stochastically nondecreasing in \(v_{gb} \):

- \(\Pr(r \geq \hat{r} \mid v_{gb}) \) nondecreasing in \(v_{gb} \) (stochastic dominance)

[Diagram showing a graph with \(v_1 \) and \(v_{gb} \) axes, and a shaded region indicating the range of \(r \).]
Main Theorem (Two Identical Products)

Ratio (relative utility) \(r := \frac{v_1}{v_{gb}} \)

- \((r, v_{gb}) \sim \hat{\mu} \) instead of \((v_1, v_{gb}) \sim \mu \)

Theorem

PB is

- optimal if \(r \) stochastically nondecreasing in \(v_{gb} \).
- not optimal if \(r \) stochastically decreasing in \(v_{gb} \).

\(r \) stochastically nondecreasing in \(v_{gb} \):

- \(Pr(r \geq \hat{r} \mid v_{gb}) \) nondecreasing in \(v_{gb} \) (stochastic dominance)

Curve:
Main Theorem (Two Identical Products)

Ratio (relative utility) \(r := v_1 / v_gb \)

- \((r, v_gb) \sim \hat{\mu}\) instead of \((v_1, v_gb) \sim \mu\)

Theorem

\textit{PB is}

- \textit{optimal} if \(r \) \textit{stochastically nondecreasing in} \(v_gb \).
- \textit{not optimal} if \(r \) \textit{stochastically decreasing in} \(v_gb \).

\(r \) \textit{stochastically nondecreasing in} \(v_gb \):

- \(\Pr(r \geq \hat{r} \mid v_gb) \) \textit{nondecreasing in} \(v_gb \)
 (stochastic dominance)

Curve:
Main Theorem: Any Number of Products

Products 1 to k, $(v_b)_{b \subseteq \{1, \ldots, k\}}$

- $\forall b$, define ratio $r_b = \frac{v_b}{v_{gb}} \in [0, 1]$. Let $r = (r_b)_{b \subseteq \{1, \ldots, k\}}$.

Theorem PB is optimal if r stochastically nondecreasing in v_{gb}.

Not optimal if r stochastically decreasing in v_{gb}.
Main Theorem: Any Number of Products

Products 1 to \(k \), \((v_b)_{b \subseteq \{1, \ldots, k\}}\)

- \(\forall b \), define ratio \(r_b = v_b / v_{gb} \in [0, 1] \). Let \(r = (r_b)_{b \subseteq \{1, \ldots, k\}} \).

Theorem

PB is

- optimal if \(r \) stochastically nondecreasing in \(v_{gb} \).
- not optimal if \(r \) stochastically decreasing in \(v_{gb} \).
Main Theorem: Any Number of Products

Products 1 to k, $(v_b)_{b \in \{1, \ldots, k\}}$

- $\forall b$, define ratio $r_b = v_b / v_{gb} \in [0, 1]$. Let $r = (r_b)_{b \in \{1, \ldots, k\}}$.

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.
Main Theorem: Any Number of Products

Products 1 to k, $(v_b)_{b \subseteq \{1,\ldots,k\}}$

- $\forall b$, define ratio $r_b = \frac{v_b}{v_{gb}} \in [0, 1]$. Let $r = (r_b)_{b \subseteq \{1,\ldots,k\}}$.

Theorem

PB is

- **optimal** if r **stochastically nondecreasing in** v_{gb}.
- **not optimal** if r **stochastically decreasing in** v_{gb}.

r **stochastically nondecreasing in** v_{gb}:

- $Pr(r \in \hat{R} \mid v_{gb})$ nondecreasing in v_{gb} for all “upper sets” \hat{R}.
Main Theorem: Any Number of Products

Products 1 to \(k\), \((v_b)_b \subseteq \{1,\ldots,k\}\)

- \(\forall b\), define ratio \(r_b = v_b / v_{gb} \in [0, 1]\). Let \(r = (r_b)_b \subseteq \{1,\ldots,k\}\).

Theorem

\(PB\) is

- **optimal** if \(r\) stochastically nondecreasing in \(v_{gb}\).
- **not optimal** if \(r\) stochastically decreasing in \(v_{gb}\).

\(r\) stochastically nondecreasing in \(v_{gb}\):

- \(Pr(r \in \hat{R} \mid v_{gb})\) nondecreasing in \(v_{gb}\) for all “upper sets” \(\hat{R}\).
Main Theorem: Any Number of Products

Products 1 to k, $(v_b)_{b \subseteq \{1,\ldots,k\}}$

- $\forall b$, define ratio $r_b = v_b / v_{gb} \in [0, 1]$. Let $r = (r_b)_{b \subseteq \{1,\ldots,k\}}$.

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb}:

- $Pr(r \in \hat{R} \mid v_{gb})$ nondecreasing in v_{gb} for all “upper sets” \hat{R}.
Main Theorem: Any Number of Products

Products 1 to k, $(v_b)_{b \subseteq \{1, \ldots, k\}}$

- $\forall b$, define ratio $r_b = v_b / v_{gb} \in [0, 1]$. Let $r = (r_b)_{b \subseteq \{1, \ldots, k\}}$.

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb}:

- $Pr(r \in \hat{R} \mid v_{gb})$ nondecreasing in v_{gb} for all “upper sets” \hat{R}.
Example 1: Complementarities

Two products, values \(v\{1\}, v\{2\}, v\{1,2\} \)
Example 1: Complementarities

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$ described by x, y_1, y_2

$$v_b = x \cdot (y_1 1_{1\in b} + y_2 1_{2\in b} + (1 - y_1 - y_2) 1_{1,2\in b})$$
Example 1: Complementarities

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$ described by x, y_1, y_2

\[v_b = x \cdot (y_1 1_{1 \in b} + y_2 1_{2 \in b} + (1 - y_1 - y_2) 1_{1,2 \in b}) \]

- x: intensity
- y_1: values for product 1 only (y_2 for product 2)
- $y_1 + y_2 > 1 \Rightarrow$ substitutes: $v_{\{1\}} + v_{\{2\}} > v_{\{1,2\}}$.

Corollary

PB is

- optimal if (y_1, y_2) stochastically nondecreasing in x.
- not optimal if (y_1, y_2) stochastically decreasing in x.

PB optimal if high value consumers consider products more substitutable.
Example 1: Complementarities

Two products, values \(v_{\{1\}} \), \(v_{\{2\}} \), \(v_{\{1,2\}} \) described by \(x, y_1, y_2 \)

\[
v_b = x \cdot (y_1 1_{1 \in b} + y_2 1_{2 \in b} + (1 - y_1 - y_2) 1_{1,2 \in b})
\]

- \(x \): intensity
- \(y_1 \): values for product 1 only (\(y_2 \) for product 2)
- \(y_1 + y_2 > 1 \Rightarrow \) substitutes: \(v_{\{1\}} + v_{\{2\}} > v_{\{1,2\}} \).
 \(y_1 + y_2 > 1 \Rightarrow \) complements; \(y_1 + y_2 = 1 \Rightarrow \) additive

Corollary

PB is optimal if \((y_1, y_2)\) stochastically nondecreasing in \(x \).

PB is not optimal if \((y_1, y_2)\) stochastically decreasing in \(x \).

PB optimal if high value consumers consider products more substitutable.
Example 1: Complementarities

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$ described by x, y_1, y_2

$$v_b = x \cdot (y_1 1_{1\in b} + y_2 1_{2\in b} + (1 - y_1 - y_2) 1_{1,2\in b})$$

- x: intensity
- y_1: values for product 1 only (y_2 for product 2)
- $y_1 + y_2 > 1 \Rightarrow$ substitutes: $v_{\{1\}} + v_{\{2\}} > v_{\{1,2\}}$. ($y_1 + y_2 > 1 \Rightarrow$ complements; $y_1 + y_2 = 1 \Rightarrow$ additive)

Corollary

PB is

- optimal if (y_1, y_2) stochastically nondecreasing in x.
- not optimal if (y_1, y_2) stochastically decreasing in x.
Example 1: Complementarities

Two products, values $v\{1\}$, $v\{2\}$, $v\{1,2\}$ described by x, y_1, y_2

$$v_b = x \cdot (y_1 1_{1 \in b} + y_2 1_{2 \in b} + (1 - y_1 - y_2) 1_{1,2 \in b})$$

- x: intensity
- y_1: values for product 1 only (y_2 for product 2)
- $y_1 + y_2 > 1 \Rightarrow$ substitutes: $v\{1\} + v\{2\} > v\{1,2\}$. ($y_1 + y_2 > 1 \Rightarrow$ complements; $y_1 + y_2 = 1 \Rightarrow$ additive)

Corollary

PB is

- optimal if (y_1, y_2) stochastically nondecreasing in x.
- not optimal if (y_1, y_2) stochastically decreasing in x.

PB optimal if high value consumers consider products more substitutable
Recall Additive Example

Additivity & perfect negative correlation

\[\Rightarrow v_{gb} \]

\[\Rightarrow r_{trivially \ stochastically\ nondecreasing\ in\ v_{gb}} \]

\[\Rightarrow PB\ optimal \]

\[\begin{array}{cc}
0.8 & 0.2 \\
0.2 & 0.8 \\
\end{array} \]

Folklore: Bundle if \(v\{1\} \), \(v\{2\} \) negatively correlated

\[\Rightarrow v_{1}, v_{2} \]: disutility from getting smaller bundle (compared to \(\{1, 2\} \))

Reinterpretation: Bundle if disutilities negatively correlated

Our result: Bundle if \(v_{1}/v_{gb} \) and \(v_{gb} \) positively correlated

\[1 - v_{1}/v_{gb} : relative \ disutility \ from \ getting \ smaller \ bundle \]

\[\Rightarrow \] Bundle if relative disutility and \(v_{gb} \) negatively correlated
Recall Additive Example

Additivity & perfect negative correlation $\Rightarrow v_{gb}$ constant
$\Rightarrow r$ trivially stochastically nondecreasing in $v_{gb} \Rightarrow$ PB optimal
Recall Additive Example

Additivity & perfect negative correlation $\Rightarrow v_{gb}$ constant
$\Rightarrow r$ trivially stochastically nondecreasing in $v_{gb} \Rightarrow$ PB optimal

Folklore: Bundle if $v\{1\}, v\{2\}$ negatively correlated
 ▶ v_1, v_2: disutility from getting smaller bundle (compared to $\{1,2\}$)
 ▶ Reinterpretation: Bundle if disutilities negatively correlated

Our result: Bundle if v_1/v_{gb} and v_{gb} positively correlated
 ▶ $1 - v_1/v_{gb}$: relative disutility from getting smaller bundle
 ▶ Bundle if relative disutility and v_{gb} negatively correlated
Example 2: Cobb Douglas Utilities

- k divisible products $1, \ldots, k$
Example 2: Cobb Douglas Utilities

- k divisible products $1, \ldots, k$
- Bundle: $b = (b_1, \ldots, b_k), b_i \in [0, 1]$
Example 2: Cobb Douglas Utilities

- k divisible products $1, \ldots, k$
- Bundle: $b = (b_1, \ldots, b_k), b_i \in [0, 1]$
- A type specified by x, y_1, \ldots, y_k
Example 2: Cobb Douglas Utilities

- k divisible products $1, \ldots, k$
- Bundle: $b = (b_1, \ldots, b_k), b_i \in [0, 1]$
- A type specified by x, y_1, \ldots, y_k

$$v(b) = x \prod_{i} b_i^{y_i}$$
Example 2: Cobb Douglas Utilities

- k divisible products $1, \ldots, k$
- Bundle: $b = (b_1, \ldots, b_k)$, $b_i \in [0, 1]$
- A type specified by x, y_1, \ldots, y_k

$$v(b) = x \prod_{i} b_i^{y_i}$$

Corollary

PB is

- optimal if (y_1, \ldots, y_k) stochastically nondecreasing in x.
- not optimal if (y_1, \ldots, y_k) stochastically decreasing in x.
Envelope Analysis and Virtual Values

Single dimension: $\phi(v) = v - \text{revenue loss}$

"virtual value" $\phi(v) = v$ - revenue loss
Envelope Analysis and Virtual Values

Single dimension: \[\phi(v) = v - \text{revenue loss} \]

"virtual value" \[\phi(v) = v - \text{revenue loss} \]

Lemma (Myerson’81)
Revenue of any IC mechanism is \(E_v[x(v) \cdot \phi(v)] \)

Theorem (Myerson’81; Riley and Zeckhauser’83)
Posting a price for the item is the optimal mechanism
Envelope Analysis and Virtual Values

Single dimension:

\[\phi(v) = v - \text{revenue loss} = v - \frac{1 - F(v)}{f(v)} \]

Lemma (Myerson’81)

Revenue of any IC mechanism is \(E_v[x(v) \cdot \phi(v)] \)
Envelop Analysis and Virtual Values

Single dimension:

```
\[ \phi(v) = v - \text{revenue loss} = v - \frac{1 - F(v)}{f(v)} \]
```

Lemma (Myerson’81)

Revenue of any IC mechanism is \(E_v[x(v) \cdot \phi(v)] \)

```
\max_{\text{mechanism } (x,p)} \quad E_v[x(v) \cdot \phi(v)] \\
\text{s.t. } 0 \leq x(v) \leq 1, \forall v, \\
\text{incentive compatibility}
```
Envelope Analysis and Virtual Values

Single dimension:

```
virtual value \phi(v) = v - \text{revenue loss} = v - \frac{1 - F(v)}{f(v)}
```

Lemma (Myerson’81)

Revenue of any IC mechanism is \(E_v[x(v) \cdot \phi(v)] \)

Theorem (Myerson’81; Riley and Zeckhauser’83)

Posting a price for the item is the optimal mechanism

\[
\max_{\text{mechanism } (x, p)} E_v[x(v) \cdot \phi(v)]
\]

s.t. \(0 \leq x(v) \leq 1, \forall v \),

incentive compatibility
Envelope Analysis and Virtual Values

Single dimension: $
\begin{array}{c}
\text{"virtual value" } \phi(v) = v - \text{revenue loss} \\
= v - \frac{1 - F(v)}{f(v)}
\end{array}$

Lemma (Myerson’81)

Revenue of any IC mechanism is $E_v[x(v) \cdot \phi(v)]$

$$\max_{\text{mechanism } (x,p)} E_v[x(v) \cdot \phi(v)]$$

s.t. $0 \leq x(v) \leq 1, \forall v$, incentive compatibility
Envelop Analysis and Virtual Values

Single dimension:

\[\phi(v) = v - \text{revenue loss} = v - \frac{1 - F(v)}{f(v)} \]

Lemma (Myerson’81)

Revenue of any IC mechanism is \(E_v[x(v) \cdot \phi(v)] \)

\[
\begin{align*}
\max_{\text{mechanism } (x,p)} & \quad E_v[x(v) \cdot \phi(v)] \\
\text{s.t. } & 0 \leq x(v) \leq 1, \forall v, \\
\text{incentive compatibility} &
\end{align*}
\]
Envelope Analysis and Virtual Values

Single dimension:

```
φ(v) = v - revenue loss = v - \frac{1 - F(v)}{f(v)}
```

Lemma (Myerson’81)

Revenue of any IC mechanism is $E_v[x(v) \cdot φ(v)]$

Theorem (Myerson’81; Riley and Zeckhauser’83)

Posting a price for the item is the optimal mechanism

\[
\max_{\text{mechanism } (x,p)} E_v[x(v) \cdot φ(v)]
\]

s.t. $0 \leq x(v) \leq 1, \forall v$,
incentive compatibility
Envelope Analysis and Curves

Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

Diagram showing v_1, V_1, v_{gb}, and V_{gb} axes with a graph illustrating the function $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$.
Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

- $\phi_{gb}(v) = v_{gb} - \frac{1-F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$
- $\phi_1(v) = V_1(v_{gb}) - V'_1(v_{gb}) \frac{1-F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$

where F_{gb}, f_{gb} are c.d.f and p.d.f of v_{gb}
Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

- $\phi_{gb}(v) = v_{gb} - \frac{1-F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$
- $\phi_1(v) = V_1(v_{gb}) - V_1'(v_{gb}) \frac{1-F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$

where F_{gb}, f_{gb} are c.d.f and p.d.f of v_{gb}

Property:
- If $r(v_{gb})$ nondecreasing then $r(v_{gb})\phi_{gb}(v_{gb}) \geq \phi_1(v_{gb})$
Envelope Analysis and Curves

Lemma

Revenue of any IC mechanism is $E_v [x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

- $\phi_{gb}(v) = v_{gb} - \frac{1-F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$
- $\phi_1(v) = V_1(v_{gb}) - V_1'(v_{gb}) \frac{1-F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$

where F_{gb}, f_{gb} are c.d.f and p.d.f of v_{gb}

Property:
- If $r(v_{gb})$ nondecreasing then $r(v_{gb})\phi_{gb}(v_{gb}) \geq \phi_1(v_{gb})$
Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

- $\phi_{gb}(v) = v_{gb} - \frac{1-F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$
- $\phi_1(v) = V_1(v_{gb}) - V_1'(v_{gb}) \frac{1-F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$

where F_{gb}, f_{gb} are c.d.f and p.d.f of v_{gb}

Property:
- If $r(v_{gb})$ nondecreasing then $r(v_{gb})\phi_{gb}(v_{gb}) \geq \phi_1(v_{gb})$
- If further ϕ_{gb} is increasing then x^* is optimal
Beyond Regularity

If ratio r increasing, then only “downward” IC constraints bind
Beyond Regularity

If ratio r increasing, then only “downward” IC constraints bind

Generalized virtual value:

$$
\hat{\phi}(v) = v - \sum_{v': \text{IC from } v' \text{ to } v \text{ binds}} \lambda(v')(v' - v),
$$

Thus

$$
\hat{\phi}(v)_{gb} \geq \hat{\phi}_1, \quad \text{and} \quad v^*_1 = 0.
$$
Beyond Regularity

If ratio r increasing, then only “downward” IC constraints bind

Generalized virtual value:

$$\hat{\phi}(v) = v - \sum_{v'} \lambda(v')(v' - v),$$

v': IC from v' to v binds

Thus $r\hat{\phi}_{gb} \geq \hat{\phi}_1$, and $x_1^* = 0.$
Beyond Paths: Orthogonalization

Two paths V_1, \hat{V}_1 (both with monotone ratio), same marginal F_{gb}. Let $p^* = \max_p (1 - F_{gb}(p))$. PB with price p^* is opt for each instance. Consider their mixture: Profit \leq profit if seller "knows" the curve. So optimal to PB with price p^*.

$V_1 = \alpha \times + (1 - \alpha) \times \hat{V}_1$

Question: When can a distribution be decomposed?

1. to ratio-monotone curves
2. with same marginal F_{gb}
Beyond Paths: Orthogonalization

Two paths V_1, \hat{V}_1 (both with monotone ratio), same marginal F_{gb}

Question: When can a distribution be decomposed?
1. to ratio-monotone curves
2. with same marginal F_{gb}
Beyond Paths: Orthogonalization

Two paths V_1, \hat{V}_1 (both with monotone ratio), same marginal F_{gb}

- Let $p^* = \max_p p(1 - F_{gb}(p))$

Question:
When can a distribution be decomposed?
1. to ratio-monotone curves
2. with same marginal F_{gb}
Beyond Paths: Orthogonalization

Two paths V_1, \hat{V}_1 (both with monotone ratio), same marginal F_{gb}

- Let $p^* = \max_p p(1 - F_{gb}(p))$
- PB with price p^* is opt for each instance

Question: When can a distribution be decomposed?

1. to ratio-monotone curves
2. with same marginal F_{gb}
Beyond Paths: Orthogonalization

Two paths V_1, \hat{V}_1 (both with monotone ratio), same marginal F_{gb}

- Let $p^* = \max_p p(1 - F_{gb}(p))$
- PB with price p^* is opt for each instance
- Consider their mixture:

$$v_1 = \alpha \times v_1 + (1 - \alpha) \times \hat{v}_1$$

Question: When can a distribution be decomposed?

1. to ratio-monotone curves
2. with same marginal F_{gb}
Beyond Paths: Orthogonalization

Two paths V_1, \hat{V}_1 (both with monotone ratio), same marginal F_{gb}

- Let $p^* = \max_p p(1 - F_{gb}(p))$
- PB with price p^* is opt for each instance
- Consider their mixture:
 - Profit \leq profit if seller "knows" the curve
 - So optimal to PB with price p^*

![Diagram showing the mixture of V_1 and \hat{V}_1]
Beyond Paths: Orthogonalization

Two paths V_1, \hat{V}_1 (both with monotone ratio), same marginal F_{gb}

- Let $p^* = \max_p p(1 - F_{gb}(p))$
- PB with price p^* is opt for each instance
- Consider their mixture:
 - Profit \leq profit if seller “knows” the curve
 - So optimal to PB with price p^*

Question: When can a distribution be decomposed?

1. to ratio-monotone curves
2. with same marginal F_{gb}
When Can a Distribution be Decomposed?

r stochastically nondecreasing in v_{gb} ($Pr(r \geq \hat{r} \mid v_H) \uparrow$ in v_{gb})
When Can a Distribution be Decomposed?

r stochastically nondecreasing in v_{gb} ($Pr(r \geq \hat{r} | v_H) \uparrow$ in v_{gb})

\Leftrightarrow “contour lines” nondecreasing
When Can a Distribution be Decomposed?

r stochastically nondecreasing in v_{gb} ($Pr(r \geq \hat{r} \mid v_H) \uparrow$ in v_{gb})

\Leftrightarrow “contour lines” nondecreasing

Support of each $\mu_{\mid q}$ ratio-monotone

$q \in [0, 1]$ for $q = 1, \frac{3}{4}, \frac{2}{4}, \frac{1}{4}$

Strassen '65, Kamae et al. '77: generalization to higher dimensions
When Can a Distribution be Decomposed?

r stochastically nondecreasing in v_{gb} ($Pr(r \geq \hat{r} \mid \nu_H) \uparrow$ in v_{gb})

\iff “contour lines” nondecreasing

Decompose distribution μ into $\{\mu \mid q\}_{q \in [0,1]}$

![Diagram showing contour lines for different values of q.]
When Can a Distribution be Decomposed?

r stochastically nondecreasing in v_{gb} ($Pr(r \geq \hat{r} \mid v_H) \uparrow$ in v_{gb})

\Leftrightarrow “contour lines” nondecreasing

Decompose distribution μ into $\{\mu \mid q\}_{q \in [0,1]}$

- Support of each $\mu \mid q$ ratio-monotone
When Can a Distribution be Decomposed?

\(r \) stochastically nondecreasing in \(v_{gb} \) \((\Pr(r \geq \hat{r} \mid v_H) \uparrow \text{in } v_{gb})\)

\(\iff \) “contour lines” nondecreasing

Decompose distribution \(\mu \) into \(\{\mu \mid q\}_{q \in [0,1]} \)

1. Support of each \(\mu \mid q \) ratio-monotone

2. \(q \) independent from \(v_{gb} \)

\[q = \frac{1}{4} \]
\[q = \frac{2}{4} \]
\[q = \frac{3}{4} \]
\[q = 1 \]
When Can a Distribution be Decomposed?

r stochastically nondecreasing in v_{gb} ($Pr(r \geq \hat{r} \mid v_H) \uparrow$ in v_{gb})

\iff “contour lines” nondecreasing

Decompose distribution μ into $\{\mu \mid q\}_{q \in [0,1]}$

1. Support of each $\mu \mid q$ ratio-monotone
2. q independent from v_{gb}

Strassen '65, Kamae et al. '77: generalization to higher dimensions
Related Work

Technically:

- Orthogonalization: Eso, Szentes '07; Pavan et al. '14
- Wilson '93, Armstrong '96: fixed paths
- Carroll '16: virtual values, fixed paths

Bundling:

- Mostly additive values
 - Fang and Norman '06: Pure bundling vs. selling separately
 - Daskalakis et al. '17: PB optimal if values i.i.d $c, c+1$ for large c
 - Pavlov '11, Menicucci et al. '15: Other i.i.d distributions
- McAfee and McMillan '88, Manelli and Vincent '06: optimality of deterministic mechanisms
Related Work

Technically:
- Orthogonalization: Eso, Szentes ’07; Pavan et al. ’14
- Wilson ’93, Armstrong ’96: fixed paths
- Carroll ’16: virtual values, fixed paths

Bundling: Mostly additive values
- Fang and Norman ’06: Pure bundling vs. selling separately
- Daskalakis et al. ’17: PB optimal if values i.i.d \([c, c + 1]\) for large \(c\)
 - Pavlov ’11, Menicucci et al. ’15: Other i.i.d distributions
- McAfee and McMillan ’88, Manelli and Vincent ’06: optimality of deterministic mechanisms
 PB optimal if \(v_{gb} \) implies high “relative utility” \(\frac{v_1}{v_{gb}} \)
Main Result

PB optimal if high v_{gb} implies high “relative utility” v_1/v_{gb}

Thanks!