Selling to a Group

Nima Haghpanah (Penn State)

with Aditya Kuvalekar (Essex) and Elliot Lipnowski (Columbia)

November 4, 2021
What mechanism is optimal (maximizes seller's profit)?
What mechanism is optimal (maximizes seller's profit)?
What mechanism is optimal (maximizes seller's profit)?
What mechanism is optimal (maximizes seller's profit?)
What mechanism is optimal (maximizes seller’s profit)?
Model

- Agents 1, ..., n
- Outcomes \(\{(x, m) | x \in [0, 1], m \in \mathbb{R}\} \)
Model

- Agents 1, \ldots, n
- Outcomes \{ (x, m) | x \in [0, 1], m \in \mathbb{R} \}
- Agent i’s payoff \(v_i x - m \)
 - \(v_i \) (independently) from \(F_i \) (regular)
Model

- Agents 1, ..., n
- Outcomes \(\{(x, m) | x \in [0, 1], m \in \mathbb{R} \} \)
- Agent \(i \)'s payoff \(v_i x - m \)
 - \(v_i \) (independently) from \(F_i \) (regular)
- Seller's payoff \(m - c x \)
Model

- Agents 1, . . . , \(n\)
- Outcomes \(\{(x, m) | x \in [0, 1], m \in \mathbb{R}\}\)
- Agent \(i\)'s payoff \(v_i x - m\)
 - \(v_i\) (independently) from \(F_i\) (regular)
- Seller's payoff \(m - cx\)

Mechanism: \((x, m) : V_1 \times \ldots \times V_N \rightarrow [0, 1] \times \mathbb{R}\)
- IIR: \(\mathbb{E}_{v_i} [v_i x(v_i, v_{-i}) - m(v_i, v_{-i})] \geq 0, \forall i, v_i\)
- BIC standard
seller ($c = 0$) → software → company

CEO

$v_1 \sim U[0, 2]$

$v_2 \sim U[0, 3]$

CTO

company

money

sell at price p if both agree

sell iff $w_1 v_1 + w_2 v_2 \geq \delta_{\text{max}}$

$p \approx 3.5$ at $p \approx 0.78$

$w_1 = \sqrt{3/7}$, $w_2 = 1 - w_1$

$\delta = 1 + w_2$
seller \((c = 0) \)

company

software

company money

CTO

\[v_2 \sim U[0, 3] \]

\[w_1 \quad v_1 + w_2 v_2 \geq \delta \max \]

\[P[v_1 \geq p] \approx 0.35 \at p \approx 0.78 \]

\[w_1 = \sqrt{3/7}, \quad w_2 = 1 - w_1, \quad \delta = 1 + w_2^2 \frac{4}{17} \]
seller \((c = 0) \)

software

company money

CEO

CTO

\[v_1 \sim U[0, 2] \]

\[v_2 \sim U[0, 3] \]

Sell at price \(32 \) if CTO agrees

Not IR:

\[v_1 = 0 \] then Utility of CEO = \(-\frac{3}{2} \cdot \frac{1}{2} \)

Sell at price \(p \) if both agree

Sell iff \(w_1 v_1 + w_2 v_2 \geq \delta \)

\[p \approx 0.35 \text{ at } p \approx 0.78 \]

\[w_1 = \sqrt{\frac{3}{7}}, \quad w_2 = 1 - w_1, \quad \delta = 1 + w_2^2 \]

\[\frac{17}{4} \]
Sell at price \(\frac{3}{2} \) if CTO agrees

\(\nu_1 \sim U[0, 2] \)
\(\nu_2 \sim U[0, 3] \)

\(w_1 = \sqrt{\frac{3}{7}} \), \(w_2 = 1 - w_1 \), \(\delta = 1 + w_2^2 \)
Not IR: $v_1 = 0$ then Utility of CEO = $-\frac{3}{2} \cdot \frac{1}{2}$
Sell at price p if both agree

Sell iff $w_1 v_1 + w_2 v_2 \geq \delta_{\text{max}}$

$P[v_1 \geq p] \approx 0.35$ at $p \approx 0.78$

$w_1 = \sqrt{\frac{3}{7}}, w_2 = 1 - w_1, \delta = 1 + w_2^2 / 17$
\[
\max_p \ p \mathbb{P}[v_1 \geq p] \mathbb{P}[v_2 \geq p] \approx 0.35 \text{ at } p \approx 0.78
\]
Sell iff $w_1 v_1 + w_2 v_2 \geq \delta$

\[w_1 = \sqrt{\frac{3}{7}}, \quad w_2 = 1 - w_1, \quad \delta = 1 + \frac{w_2}{2} \]
Theorem

The following mechanism is optimal:

1. Allocation \textit{maximizes weighted sum of virtual values}

2. Weights \textit{minimize weighted virtual surplus}

3. \textit{Transfer rule is “defined appropriately”}
Theorem

The following mechanism is optimal:

1. Allocation maximizes weighted sum of virtual values

 \[
 \text{Allocate} \iff \left(\sum_i w_i^* \phi_i(v_i) \right) - c \geq 0
 \]

 where \(\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)} \)

2. Weights minimize weighted virtual surplus

3. Transfer rule is “defined appropriately”
Theorem

The following mechanism is optimal:

1. Allocation maximizes weighted sum of virtual values

\[\text{Allocate} \iff \left(\sum_i w_i^* \phi_i(v_i) \right) - c \geq 0 \]

where \(\phi_i(v_i) = v_i - \frac{1-F_i(v_i)}{f_i(v_i)} \)

2. Weights minimize weighted virtual surplus

\[w^* \in \arg \min_{w \in \Delta(\{1,\ldots,n\})} \mathbb{E} \left[\max \left(\left(\sum_i w_i \phi_i(v_i) \right) - c, 0 \right) \right] \]

3. Transfer rule is “defined appropriately”
Theorem

The following mechanism is optimal:

1. **Allocation maximizes weighted sum of virtual values**

 \[
 \text{Allocate} \iff \left(\sum_i w_i^* \phi_i(v_i) \right) - c \geq 0
 \]

 where \(\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)} \)

2. **Weights minimize weighted virtual surplus**

 \[
 w^* \in \arg \min_{w \in \Delta(\{1, \ldots, n\})} \mathbb{E} \left[\max \left(\left(\sum_i w_i \phi_i(v_i) \right) - c, 0 \right) \right]
 \]

3. **Transfer rule is “defined appropriately”**

 so that payment identity is satisfied
Proof sketch

Implementability + Duality
Step 1: implementability

Our setting

Lemma

\[\exists m \text{ s.t. } (x, m) \text{ is IC iff } \]

Among these mechanisms,

\[\text{opt revenue } = \]

With individual transfers

Lemma

\[\exists m \text{ s.t. } (x, m) \text{ is IC iff } \]

\[\text{Among these mechanisms, } \]

\[\text{opt revenue } = \]
Step 1: implementability

Our setting

Lemma

\(\exists m \text{ s.t. } (x, m) \text{ is IC iff } X_i \text{ is monotone } \forall i \)

Among these mechanisms,

\[
\text{opt revenue} = \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]
\]
Step 1: implementability

Our setting

Lemma

\[\exists m \text{ s.t. } (x, m) \text{ is IC iff } \forall i \]

Among these mechanisms,

\[\text{opt revenue} = \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \]

With individual transfers

Lemma

\[\exists m \text{ s.t. } (x, m) \text{ is IC iff } \forall i \]

Among these mechanisms,

\[\text{opt revenue} = \sum_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \]
Step 1: implementability

Our setting

Lemma

∃m s.t. (x, m) is IC iff
X_i is monotone ∀i

Among these mechanisms,

\[\text{opt revenue} = \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \]

\[M_i(v_i) = v_iX_i(v_i) - \int_{v_i} X_i(z)dz - U_i \]

With individual transfers

Lemma

∃m s.t. (x, m) is IC iff
X_i is monotone ∀i

Among these mechanisms,

\[\text{opt revenue} = \sum_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \]
Step 1: implementability

Our setting

Lemma

∃m that induces \(M_1, \ldots, M_n \) iff

\[\exists m \text{ s.t. } (x, m) \text{ is IC iff } X_i \text{ is monotone } \forall i \]

Among these mechanisms,

\[\text{opt revenue} = \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \]

\[M_i(v_i) = v_iX_i(v_i) - \int_{v_i} X_i(z)dz - U_i \]

With individual transfers

Lemma

∃m s.t. \((x, m)\) is IC iff

\(X_i \) is monotone \(\forall i \)

Among these mechanisms,

\[\text{opt revenue} = \sum_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \]
Step 1: implementability

Our setting

Lemma
\[\exists m \text{ that induces } M_1, \ldots, M_n \iff \forall i, j \] \[E_{v_i}[M_i(v_i)] = E_{v_j}[M_j(v_j)], \forall i, j \]

\[\exists m \text{ s.t. } (x, m) \text{ is IC iff} \] \[X_i \text{ is monotone } \forall i \]

Among these mechanisms,
\[\text{opt revenue} = \min_i E[X_i(v_i)\phi_i(v_i)] \]

With individual transfers

Lemma
\[\exists m \text{ s.t. } (x, m) \text{ is IC iff} \] \[X_i \text{ is monotone } \forall i \]

Among these mechanisms,
\[\text{opt revenue} = \sum_i E[X_i(v_i)\phi_i(v_i)] \]

\[M_i(v_i) = v_i X_i(v_i) - \int_{z}^{v_i} X_i(z)dz - U_i \]
Step 1: Implementability

Our setting

Lemma

\(\exists m \text{ that induces } M_1, \ldots, M_n \iff \)

\(E_{v_i}[M_i(v_i)] = E_{v_j}[M_j(v_j)], \forall i, j \)

\(\exists m \text{ s.t. } (x, m) \text{ is IC iff } \)

\(X_i \text{ is monotone } \forall i \)

Among these mechanisms,

\(\text{opt revenue} = \min_i E[X_i(v_i)\phi_i(v_i)] \)

With individual transfers

Lemma

\(\exists m \text{ s.t. } (x, m) \text{ is IC iff } \)

\(X_i \text{ is monotone } \forall i \)

Among these mechanisms,

\(\text{opt revenue} = \sum_i E[X_i(v_i)\phi_i(v_i)] \)

\[M_i(v_i) = v_iX_i(v_i) - \int_{0}^{v_i} X_i(z)dz - U_i \]

\[m(v) = \frac{\prod_i M_i(v_i)}{E_{v_i}[M_i(v_i)]^{n-1}} \]
Step 2: duality

\[
\max_{\text{allocation}} \min_{i} \mathbb{E}[X_i(v_i)\phi_i(v_i)]
\]
Step 2: duality

\[
\max_{\text{allocation}} \min_i E[X_i(v_i)\phi_i(v_i)]
\]

\[
\min_{w \in \Delta(N)} \max_{\text{allocation}} \sum_i w_i E[X_i(v_i)\phi_i(v_i)] = \min_{w \in \Delta(N)} \max_{\text{allocation}} \sum_i w_i E[X_i(v_i)\phi_i(v_i)] = \min_{w \in \Delta(N)} E[\max(\sum_i w_i \phi_i(v_i), 0)]
\]
Step 2: duality

\[\max_{\text{allocation}} \min_{w \in \Delta(N)} \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] = \min_{w \in \Delta(N)} \max_{\text{allocation}} \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] = \mathbb{E}[\max(\sum_i w_i \phi_i(v_i), 0)] \]
Step 2: duality

\[
\begin{align*}
\max_{\text{allocation}} & \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \\
= & \max_{\text{allocation}} \min_w \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \\
= & \min_w \max_{\text{allocation}} \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]
\end{align*}
\]
Step 2: duality

\[
\begin{align*}
\max_{\text{allocation}} \min_{i} & \quad \mathbb{E}[X_i(v_i)\phi_i(v_i)] \\
= \max_{\text{allocation}} \min_{w \in \Delta(N)} & \quad \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \\
= \min_{w \in \Delta(N)} \max_{\text{allocation}} & \quad \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] \\
= \min_{w \in \Delta(N)} & \quad \mathbb{E}[\max(\sum_i w_i\phi_i(v_i), 0)]
\end{align*}
\]
Which agent has a higher weight?

Proposition

If ϕ_1 is smaller than ϕ_2 in the "hazard rate" order, then $w^*_1 \geq w^*_2$.

If v_1 and αv_2 are identically distributed for some $\alpha \leq 1$, then $\alpha w^*_1 \geq w^*_2$.

Sell at price 2 if CTO agrees

Sell at price 3 if CEO agrees

Revenue = 0

Revenue = $\frac{9}{17}$
Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w^*_{\phi_1} \geq w^*_{\phi_2}$.

If v_1 and αv_2 are identically distributed for some $\alpha \leq 1$, then $\alpha w^*_{v_1} \geq w^*_{v_2}$.

Sell at price 3 if CTO agrees, and pay $\frac{9}{17}$ to company.

Revenue = 0 if CEO agrees, and sell at price 1.

$9 / 17$
Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.
Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.

\[
\begin{align*}
\text{seller} & \quad \text{software} \quad \text{company} \\
\text{company} & \quad \text{money} \quad \text{CEO} \\
& \quad \text{CTO} \\
& \quad v_1 \sim U[0, 2] \\
& \quad v_2 \sim U[1, 3]
\end{align*}
\]
Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.

Sell at price $\frac{3}{2}$ if CTO agrees

CEO

CTO

Sell at price $\frac{3}{2}$ if CTO agrees

company

company money

software

$v_1 \sim U[0, 2]$

$v_2 \sim U[1, 3]$
Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.

- **CEO**
 - Sell at price $\frac{3}{2}$ if CTO agrees
 - Pay $\frac{9}{8}$ to company

- **CTO**
 - $v_1 \sim U[0, 2]$
 - $v_2 \sim U[1, 3]$

- **Software**

- **Company**
 - Revenue = 0
 - Sell at price $\frac{1}{2}$ if CEO agrees
 - Revenue = $\frac{9}{17}$
Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.

Diagram:

- **Seller**
 - Sell at price $\frac{3}{2}$ if CTO agrees
 - Pay $\frac{9}{8}$ to company
- **CEO**
 - Revenue = 0
- **CTO**
 - $v_1 \sim U[0, 2]$
 - $v_2 \sim U[1, 3]$
- **Company**
 - Money
Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.

![Diagram showing seller, software, company, CEO, CTO, and money distributions with marginal distributions $v_1 \sim U[0, 2]$ and $v_2 \sim U[1, 3]$.]
Which agent has a higher weight? The “weaker” one

Proposition

If \(\phi_1 \) is smaller than \(\phi_2 \) in the “hazard rate” order, then \(w_1^* \geq w_2^* \).

Sell at price 1 if CEO agrees

Revenue = \(\frac{1}{2} \)

Company

CEO

CTO

\(v_1 \sim U[0, 2] \)

\(v_2 \sim U[1, 3] \)
Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 *is smaller than* ϕ_2 *in the “hazard rate” order, then* $w_1^* \geq w_2^*$. *

If v_1 and αv_2 are identically distributed for some $\alpha \leq 1$, then $\alpha w_1^* \geq w_2^*$. *

Diagram:

- **Seller:** Sell at price 1 if CEO agrees.
- **CEO:**
 - $v_1 \sim U[0, 2]$
- **CTO:**
 - $v_2 \sim U[1, 3]$
- **Software Revenue:** $\text{Revenue} = \frac{1}{2}$

Company:

- Company money

Which agent has a higher weight? The “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.
Which agent has a higher weight? The “weaker” one

Proposition

If \(\phi_1 \) is smaller than \(\phi_2 \) in the “hazard rate” order, then \(w_1^* \geq w_2^* \).

1. Suppose \(w_1 < w_2 \) are optimal
2. \(w_1 \phi_1(v_1) + w_2 \phi_2(v_2) \) larger than \(w_2 \phi_1(v_1) + w_1 \phi_2(v_2) \) in hazard rate order
3. \(\mathbb{E}[\max(w_1 \phi_1(v_1) + w_2 \phi_2(v_2), 0)] \geq \mathbb{E}[\max(w_2 \phi_1(v_1) + w_1 \phi_2(v_2), 0)] \)
4. Contradicts uniqueness of optimal weights
Extensions

1. Pareto optimality
2. Fixed-share payment rules
3. Beyond veto bargaining
4. Sub-optimality of posted pricing
1. Pareto Optimality

Theorem

A mechanism is Pareto optimal iff

\[\exists \gamma \in [0, 1], \lambda, w^* \in \Delta(\{1, \ldots, n\}) \text{ s.t.} \]

\[\text{Allocation } x^* \text{ maximizes weighted sum of values & virtual values} \]

\[\text{Allocate } \Leftrightarrow (1 - \gamma)(\sum_i w_i^* \phi_i(v_i)) + \gamma(\sum_i \lambda_i v_i) \geq c \]

where

\[\phi_i(v_i) = v_i - 1 - F_i(v_i) f_i(v_i) \]

2. Weights

\[w^* \in \arg \min_{w \in \Delta(\{1, \ldots, n\})} E[(\sum_i w_i \phi_i(v_i) - c) x^*(v_i)] \]

3. Transfer rule is “defined appropriately” so that payment identity is satisfied.
1. Pareto Optimality

Theorem

A mechanism is Pareto optimal iff \(\exists \gamma \in [0, 1], \lambda, w^* \in \Delta(\{1, \ldots, n\}) \) s.t.

1. **Allocation** \(x^* \) maximizes weighted sum of values & virtual values

2. **Weights** \(w^* \) minimize weighted virtual surplus

3. **Transfer rule** is “defined appropriately”
1. Pareto Optimality

Theorem

A mechanism is Pareto optimal iff \(\exists \gamma \in [0, 1], \lambda, w^* \in \Delta(\{1, \ldots, n\}) \) s.t.

1. **Allocation** \(x^* \) **maximizes weighted sum of values & virtual values**

 \[
 \text{Allocate} \iff (1 - \gamma) \left(\sum_i w_i^* \phi_i(v_i) \right) + \gamma \left(\sum_i \lambda_i v_i \right) \geq c
 \]

 where \(\phi_i(v_i) = v_i - \frac{1-F_i(v_i)}{f_i(v_i)} \)

2. **Weights** \(w^* \) **minimize weighted virtual surplus**

3. **Transfer rule is “defined appropriately”**
1. Pareto Optimality

Theorem

A mechanism is Pareto optimal iff $\exists \gamma \in [0, 1], \lambda, w^* \in \Delta(\{1, \ldots, n\})$ s.t.

1. **Allocation** x^* maximizes weighted sum of values & virtual values

 Allocate $\Leftrightarrow (1 - \gamma) \left(\sum_i w_i^* \phi_i(v_i) \right) + \gamma \left(\sum_i \lambda_i v_i \right) \geq c$

 where $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$

2. **Weights** w^* minimize weighted virtual surplus

 $w^* \in \arg \min_{w \in \Delta(\{1, \ldots, n\})} \mathbb{E} \left[\left(\sum_i w_i \phi_i(v_i) - c \right) x^*(v) \right]$

3. **Transfer rule** is “defined appropriately”
1. Pareto Optimality

Theorem

A mechanism is Pareto optimal iff $\exists \gamma \in [0, 1], \lambda, w^* \in \Delta(\{1, \ldots, n\})$ s.t.

1. Allocation x^* maximizes weighted sum of values & virtual values

$$\text{Allocate} \iff (1 - \gamma) \left(\sum_i w_i^* \phi_i(v_i) \right) + \gamma \left(\sum_i \lambda_i v_i \right) \geq c$$

where $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$

2. Weights w^* minimize weighted virtual surplus

$$w^* \in \arg \min_{w \in \Delta(\{1, \ldots, n\})} \mathbb{E} \left[\left(\sum_i w_i \phi_i(v_i) - c \right) x^*(v) \right]$$

3. Transfer rule is “defined appropriately”

so that payment identity is satisfied
2. Fixed-share payment rules

What if agents pay out of pocket, but in fixed shares?
2. Fixed-share payment rules

What if agents pay out of pocket, but in fixed shares?

- Agent i pays $\sigma_i m$, for fixed $\sigma_1, \ldots, \sigma_n$
- Payoff $v_i x - \sigma_i m$
- Relabel $\theta_i = v_i / \sigma_i$
- Payoff $\sigma_i (\theta_i x - m)$
2. Fixed-share payment rules

What if agents pay out of pocket, but in fixed shares?

- Agent i pays $\sigma_i m$, for fixed $\sigma_1, \ldots, \sigma_n$
- Payoff $v_i x - \sigma_i m$
- Relabel $\theta_i = v_i / \sigma_i$
- Payoff $\sigma_i (\theta_i x - m)$

E.g., if v_i i.i.d and $\sigma_1 \leq \ldots \leq \sigma_n$
2. Fixed-share payment rules

What if agents pay out of pocket, but in fixed shares?

- Agent i pays $\sigma_i m$, for fixed $\sigma_1, \ldots, \sigma_n$
- Payoff $v_i x - \sigma_i m$
- Relabel $\theta_i = v_i / \sigma_i$
- Payoff $\sigma_i (\theta_i x - m)$

E.g., if v_i i.i.d and $\sigma_1 \leq \ldots \leq \sigma_n$

- Then $w_1^* \leq \ldots \leq w_n^*$
2. Fixed-share payment rules

What if agents pay out of pocket, but in fixed shares?

- Agent i pays $\sigma_i m$, for fixed $\sigma_1, \ldots, \sigma_n$
- Payoff $v_i x - \sigma_i m$
- Relabel $\theta_i = v_i / \sigma_i$
- Payoff $\sigma_i (\theta_i x - m)$

E.g., if v_i i.i.d and $\sigma_1 \leq \ldots \leq \sigma_n$

- Then $w_1^* \leq \ldots \leq w_n^*$
- Pay more attention to agents who are “more on the hook”
3. Beyond Veto Bargaining

What if mechanism needs to be approved by $k < n$ agents?
3. Beyond Veto Bargaining

What if mechanism needs to be approved by $k < n$ agents?

1. A set of $k < n$ agents fixed a priori
3. Beyond Veto Bargaining

What if mechanism needs to be approved by $k < n$ agents?

1. A set of $k < n$ agents fixed a priori
 - Then solve problem for those k

Mechanism announced. Agents vote. Mechanism approved if $k < n$ agents vote "yes"

Mechanism: $x = 0, m > 0$. Silly equilibrium: all vote yes

Pay $m + 1$ if not unanimously approved. Then "yes" undominated.

Worse-case equilibria?

Mechanism announced. Agents vote to "mediator". Mechanism approved if $k < n$ agents vote "yes". Seller only learns approve/reject.

When approved, agents update belief. No longer independent.
3. Beyond Veto Bargaining

What if mechanism needs to be approved by \(k < n \) agents?

1. A set of \(k < n \) agents fixed a priori
 - Then solve problem for those \(k \)

2. Mechanism announced. Agents vote. Mechanism approved if \(k < n \) agents vote “yes”
3. Beyond Veto Bargaining

What if mechanism needs to be approved by $k < n$ agents?

1. A set of $k < n$ agents fixed a priori
 - Then solve problem for those k

2. Mechanism announced. Agents vote. Mechanism approved if $k < n$ agents vote “yes”
 - Mechanism: $x = 0, m >> 0$. Silly equilibrium: all vote yes
 - Pay $m + 1$ if not unanimously approved. Then “yes” undominated.
3. Beyond Veto Bargaining

What if mechanism needs to be approved by $k < n$ agents?

1. A set of $k < n$ agents fixed a priori
 - Then solve problem for those k

2. Mechanism announced. Agents vote. Mechanism approved if $k < n$ agents vote “yes”
 - Mechanism: $x = 0, m >> 0$. Silly equilibrium: all vote yes
 - Pay $m + 1$ if not unanimously approved. Then “yes” undominated.
 - Worse-case equilibria?
3. Beyond Veto Bargaining

What if mechanism needs to be approved by \(k < n \) agents?

1. A set of \(k < n \) agents fixed a priori
 - Then solve problem for those \(k \)

2. Mechanism announced. Agents vote. Mechanism approved if \(k < n \) agents vote “yes”
 - Mechanism: \(x = 0, m >> 0 \). Silly equilibrium: all vote yes
 - Pay \(m + 1 \) if not unanimously approved. Then “yes” undominated.
 - Worse-case equilibria?

3. Mechanism announced. Agents vote to “mediator”. Mechanism approved if \(k < n \) agents vote “yes”. Seller only learns approve/reject.
3. Beyond Veto Bargaining

What if mechanism needs to be approved by \(k < n \) agents?

1. A set of \(k < n \) agents fixed a priori
 - Then solve problem for those \(k \)

2. Mechanism announced. Agents vote. Mechanism approved if \(k < n \) agents vote “yes”
 - Mechanism: \(x = 0, m > > 0 \). Silly equilibrium: all vote yes
 - Pay \(m + 1 \) if not unanimously approved. Then “yes” undominated.
 - Worse-case equilibria?

3. Mechanism announced. Agents vote to “mediator”. Mechanism approved if \(k < n \) agents vote “yes”. Seller only learns approve/reject.
 - When approved, agents update belief. No longer independent.
4. Sub-optimality of posted pricing

Posted pricing is not even \textit{approximately optimal}.
4. Sub-optimality of posted pricing

Posted pricing is not even approximately optimal

What does posted pricing mean?

- A mechanism is posted pricing if \(m = px \) for some fixed \(p \in \mathbb{R} \)
4. Sub-optimality of posted pricing

Posted pricing is not even approximately optimal

What does posted pricing mean?

- A mechanism is posted pricing if $m = px$ for some fixed $p \in \mathbb{R}$

Then, exists an instance with i.i.d values where

- As number of agents $\to \infty$, $\frac{\text{posted pricing revenue}}{\text{optimal revenue}} \to 0$
Related Literature

Mechanisms for public goods
▶ e.g., d’Aspremont Gérard-Varet 1979, Güth Hellwig 1986

Voting mechanisms without transfers
▶ e.g., Rae 1969, Azrieli Kim 2014
Related Literature

Mechanisms for public goods
 e.g., d’Aspremont Gérard-Varet 1979, Güth Hellwig 1986

Voting mechanisms without transfers
 e.g., Rae 1969, Azrieli Kim 2014

Reduced-form implementation
 e.g., Matthews 1984, Border 1991

BIC-DIC equivalence
 e.g., Manelli Vincent 2010, Gershkov et al 2013
Single seller, single product, “single” buyer

- Posting a price is not optimal
Single seller, single product, “single” buyer

- Posting a price is not optimal
- Pay more attention to “weaker” agents
Single seller, single product, “single” buyer

- Posting a price is not optimal
- Pay more attention to “weaker” agents

Correlated/interdependent values?
Single seller, single product, “single” buyer

- Posting a price is not optimal
- Pay more attention to “weaker” agents

Correlated/interdependent values?

The End!