Designing and Pricing Certificates

Nima Haghpanah joint with Nageeb Ali, Xiao Lin, Ron Siegel

May 8, 2020

Certification

Labor markets, Financial markets, Products

What certificates would an agent acquire and disclose?

How would a profit-maximizing certifier design and price certificates?

A worker, a certifier, a competitive labor market

Ability $\theta \sim U\{0,1\}$

unknown to all

A test-fee structure (T, ϕ) :

- **1** Test $T: \{0,1\} \rightarrow \Delta(S)$ WLOG $E[\theta|s] = s$
- 2 Testing fee ϕ_t Disclosure fee ϕ_d

Market observes s or "N" Market offers wage $= E[\theta]$

Profit-maximizing test-fee structures?

$$\sup_{\text{test-fee structure}} \sup_{\text{equilibria}} \operatorname{Profit} = \operatorname{Full surplus} E[\theta] = 0.5$$

Fully reveal,
$$\phi_t = 0.5, \phi_d = 0$$

► Another equilibrium: worker doesn't take test. Profit = 0

$$\sup_{\text{test-fee structure}} \inf_{\substack{\text{equilibria}}} \operatorname{Profit} = 0.5 \cdot (1 - 1/e) \approx 0.31$$

"Robustly optimal" test-fee structure:

- Is unique
- Zero testing fee
- Not fully revealing: continuum of scores

Related Work

Profit-maximizing certification:

- Lizzeri (1999). Informed worker, mandatory disclosure:
 - Signaling vs. voluntary disclosure
- ▶ DeMarzo, Kremer, Skrzypacz (2019). "favorable" selection

Adversarial equilibrium selection in information/mechanism design:

Dworczak and Pavan (2020), Halac, Kremer, Winter (2020), Halac, Lipnowski, Rappoport (2020), ...

Information design and unit-elastic distributions:

- ▶ Roesler and Szentes (2017), Ortner and Chassang (2018), Condorelli and Szentes (2020), ...
 - Indifference condition vs. worst-equilibrium condition

Next

Identify optimal test with $\phi_t=0$ and $\phi_d=0.5$

sup inf equilibria

Probability of disclosure

Exponential distribution maximizes inf Probability of disclosure equilibria

Disclosure stage: threshold structure

Equilibrium threshold τ :

$$\tau - \phi_d = w_N = E[s|s \le \tau]$$

Worst equilibrium τ is largest intersection:

$$\tau' - \phi_d \neq E[s|s \leq \tau'], \forall \tau' > \tau$$

Claim: Robustly optimal test-fee structure,

Worker participates with probability 1 in all equilibria

Fully revealing test

Worst equilibrium threshold = ϕ_d

▶ Probability of disclosure = 0.5

Improvement by a noisy test

Worst equilibrium threshold = ϕ_d

▶ Probability of disclosure > 0.5

"Robustly optimal" test subject to $\phi_t=$ 0, $\phi_d\simeq 0.5$

Worst equilibrium threshold = ϕ_d

▶ Probability of disclosure $1 - 1/e \approx 0.63$

$$\phi_{d} = \frac{\int_{0}^{\tau} G(s)ds}{G(\tau)}$$

$$= \left(\frac{d}{d\tau} \left(\ln(\int_{0}^{\tau} G(s)ds) \right) \right)^{-1}$$

$$\Rightarrow G(\tau) = \frac{c}{\phi_{d}} e^{\tau/\phi_{d}}$$

$$0.5 + \epsilon$$

$$0.5$$

$$E[s|s \leq \tau]$$

Robustly optimal test-fee structure

Proposition

There is a unique robustly optimal test-fee structure. It consists of testing fee $\phi_t^* = 0$, disclosure fee $\phi_d^* = 0.5$, and test T below.

Continuum of scores even though abilities are binary.

Arbitrary prior over $\theta \in [0,1]$ with mean μ

Proposition

Robustly optimal profit $\leq (1-\mu)(1-e^{\frac{-\mu}{1-\mu}}) < \mu$.

Proposition

There exists a robustly optimal test-fee structure with a "step-exponential-step" score distribution.

Disclosure fee > 0

Contrast with "maximize value and extract via testing fee" intuition.

Testing fee?

- ► Positive for log-concave priors
- ► May be zero (e.g., for binary prior)

Precluding no-testing equilibria

$$\mu < \underbrace{\int_0^1 \max\{\mu, s - \phi_d\}}_{\text{Option Value}} dG - \phi_t,$$

Rearranging:

$$\phi_t < \int_{\mu + \phi_d}^1 [s - (\mu + \phi_d)] dG, \tag{P}$$

Lemma

- If (P), \forall equilibria: worker takes test with probability 1
- ② If !(P), \exists equilibrium: worker takes test with probability 0

Proves earlier claim: Robustly optimal test-fee structure,

Worker participates with probability 1 in all equilibria

Optimality of positive disclosure fee

profit =
$$\frac{\phi_t}{\phi_t}$$
 profit = $\frac{\phi_t}{\phi_d} + \frac{\phi_d}{\phi_d} (1 - G(\phi_d))$

Extensions

- Small amount of private information
 - ► Full surplus extraction remains impossible
 - ► Step-exponential-step distributions are approximately optimal
- Technological constraints: Certifier has a set of feasible tests
 - ► Assumption: feasible to garble a feasible test
 - Step-exponential-step is optimal
- Score-dependent disclosure fees
 - Allows for slightly higher profit, still not full surplus

