Journal Publications

Papers under review

  1. E. Yazdandoost Hamedani, A. Jalilzadeh, N. S. Aybat and U. V. Shanbhag, “Iteration Complexity of Randomized Primal-Dual Methods for Convex-Concave Saddle Point Problems,” under review, 2018.

  2. E. Yazdandoost Hamedani and N. S. Aybat, “An Accelerated Primal-dual Algorithm for General Convex-Concave Saddle Point Problems,” under review, 2018.

  3. N. S. Aybat and E. Yazdandoost Hamedani, “A distributed ADMM-like method for resource sharing under conic constraints over time-varying networks,” under review in SIAM Journal on Optimization, 2018.

  4. J. Wang, M. Ashour, C. Lagoa, N. S. Aybat, and H. Che, “A Distributed Traffic Allocation Algorithm for Non-concave Utility Maximization in Connectionless Networks,” under review in Automatica, 2017.

  5. Necdet Serhat Aybat and Zi Wang, “A Parallelizable Dual Smoothing Method for Large Scale Convex Regression Problems,” under review in Computational Optimization and Applications, 2016.

  6. Hesam Ahmadi, Necdet Serhat Aybat, and Uday V. Shanbhag, “On the Analysis of Inexact Augmented Lagrangian Schemes for Misspecified Conic Convex Programs,” under review in IEEE Transaction on Automatic Control, 2016.

  7. Sam Davanloo Tajbakhsh, Necdet Serhat Aybat, and Enrique del Castillo, “Sparse Precision Matrix Selection for Fitting Gaussian Random Field Models to Large Data Sets,” under review in Journal of Machnine Learning Research, 2016.

Accepted/Published Papers

  1. S. Ma and N. S. Aybat, “Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants,” accepted to be published in the Proceedings of the IEEE, 2018.

  2. M. Ashour, J. Wang, N. S. Aybat, C. Lagoa, and H. Che, “End-to-End Distributed Flow Control for Networks with Nonconcave Utilities,” accepted to be published in Transactions on Network Science and Engineering, 2017.

  3. Sam Davanloo Tajbakhsh, Necdet Serhat Aybat, and Enrique del Castillo, “Generalized Sparse Precision Matrix Selection for Fitting Multivariate Gaussian Random Fields to Large Data Sets,” Statistica Sinica, 28 (2018), pp. 941-962.

  4. Necdet Serhat Aybat, Zi Wang, Tianyi Lin, and Shiqian Ma, “Distributed Linearized Alternating Direction Method of Multipliers for Composite Convex Consensus Optimization,” IEEE Transactions on Automatic Control, 63 (2018), pp.5-20.

  5. Ashkan Jasour, Necdet Serhat Aybat, and Constantino Lagoa, “Semidefinite Programming for Chance Constrained Optimization over Semialgebraic Sets,” SIAM Journal on Optimization, 25 (2015), pp. 1411-1440.

  6. Necdet Serhat Aybat and Garud Iyengar, “An Alternating Direction Method with Increasing Penalty for Stable Principal Component Pursuit,” Computational Optimization and Applications, 61 (2015), pp. 635-668.

  7. Necdet Serhat Aybat and Garud Iyengar, “A Unified Approach for Minimizing Composite Norms,” Mathematical Programming, Series A, 144 (2014), pp. 181-226.

  8. Necdet Serhat Aybat, Shiqian Ma and Donald Goldfarb, “Efficient Algorithms for Robust and Stable Principal Component Pursuit Problems,” Computational Optimization and Applications, 58 (2014), pp. 1-29.

  9. Necdet Serhat Aybat and Garud Iyengar, “A First-Order Augmented Lagrangian Method for Compressed Sensing,” SIAM Journal on Optimization, 22 (2012), pp. 429-459.

  10. Necdet Serhat Aybat and Garud Iyengar, “A First-Order Smoothed Penalty Method for Compressed Sensing,” SIAM Journal on Optimization, 21 (2011), pp. 287-313.

Technical Reports

  1. Necdet Serhat Aybat and Garud Iyengar, “An Augmented Lagrangian Method for Conic Convex Programming,” 2013.

  2. Necdet Serhat Aybat and Amit Chakraborty, “Fast Reconstruction of CT Images from Parsimonious Angular Measurements,” 2011.

Peer Reviewed Conference Papers

  1. N. S. Aybat, and M. Gurbuzbalaban, “Decentralized Computation of Effective Resistances and Acceleration of Consensus Algorithms,” the Proceedings of 2017 5th IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, Canada, November 14-16, 2017, pp. 538-542.

  2. E. Yazdandoost Hamedani, and N. S. Aybat, “Multi-agent Constrained Optimization of a Strongly Convex Function,” the Proceedings of 2017 5th IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, Canada, November 14-16, 2017, pp. 558-562.

  3. E. Yazdandoost Hamedani, and N. S. Aybat, “Multi-agent constrained optimization of a strongly convex function over time-varying directed networks/,” the Proceedings of 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, 2017, pp. 518-525.

  4. J. Wang, M. Ashour, C. Lagoa, N. S. Aybat, and H. Che, “Non-concave network utility maximization in connectionless networks: A fully distributed traffic allocation algorithm,” the Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, May 24-26, 2017, pp. 3980-3985.

  5. M. Ashour, J. Wang, C. Lagoa, N. S. Aybat, and H. Che, “Non-Concave Network Utility Maximization: A Distributed Optimization Approach,” the Proceedings of IEEE INFOCOM 2017 - The 36th Annual IEEE International Conference on Computer Communications, Atlanta, GA, USA, May 1-4, 2017, pp. 1-9 (acceptance rate 20.93%, 292 / 1395).

  6. N. S. Aybat, and E. Yazdandoost Hamedani, “A primal-dual method for conic constrained distributed optimization problems,” Advances in Neural Information Processing Systems 29 (2016), pp.5049-5057. (Acceptance rate 22.72%, 568 / 2500).

  7. E. Yazdandoost Hamedani, and N. S. Aybat, “Distributed primal-dual method for multi-agent sharing problem with conic constraints,” 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2016, pp. 777-782.

  8. Hesam Ahmadi, Necdet Serhat Aybat, and Uday V. Shanbhag, “On the rate analysis of inexact augmented Lagrangian schemes for convex optimization problems with misspecified constraints,” the Proceedings of 2016 American Control Conference (ACC), Boston, MA, USA (2016), pp. 4841-4846.

  9. Necdet Serhat Aybat, Zi Wang, and Garud Iyengar, “An Asynchronous Distributed Proximal Gradient Method for Composite Convex Optimization,” Journal of Machine Learning Research (JMLR): W&CP 37 (2015), pp. 2454-2462 – Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015 (acceptance rate 26.03%, 270 / 1037).

  10. Necdet Serhat Aybat, Sahar Zarmehri and Soundar Kumara, “An ADMM Algorithm for Clustering Partially Observed Networks,” the Proceedings of the 2015 SIAM International Conference on Data Mining (2015), pp. 460-468. (Acceptence Rate: 14.66%) Download SDM15 Presentation

  11. Necdet Serhat Aybat and Zi Wang, “A Parallel Method for Large Scale Convex Regression Problems,” the Proceedings of the IEEE Conference on Decision and Control (2014), pp. 5710-5717.

  12. Necdet Serhat Aybat, Sinem Daysal, Burcu Tan and Fulden Topaloglu, “Decision Making Tests with Different Variations of the Stock Management Game,” the Proceedings of the 22nd International System Dynamics Conference (2004), Oxford, UK.

Chapters in Collections & Books

  1. N. S. Aybat, “Algorithms for Stable PCA” in Handbook of Robust Low Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing, edited by T. Bouwmans, N. S. Aybat, and E. Zahzah, CRC Press, Taylor and Francis Group, 2016.
    IMPORTANT: The first print of the book has typos in chapter “Algorithms for Stable PCA.” Download the corrected version

  2. Handbook of Robust Low Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing, edited by T. Bouwmans, N. S. Aybat, and E. Zahzah, CRC Press, Taylor and Francis Group, 2016

Theses

  1. Necdet Serhat Aybat, “First Order Methods for Large-Scale Sparse Optimization,” PhD Thesis, 2011.

  2. Necdet Serhat Aybat, “Analysis and Solution of Cardinality Constrained Quadratic Portfolio Optimization Problem Using Eigen Portfolios,” MS Thesis, 2005