BOREL COMBINATORICS FAIL IN HYP

HENRY TOWSNER, ROSE WEISSHAAR, AND LINDA WESTRICK

Abstract. We characterize the completely determined Borel subsets of HYP as exactly the $\Delta^1_1(L_{\omega^{\omega^k}})$ subsets of HYP. As a result, HYP believes there is a Borel well-ordering of the reals, that the Borel Dual Ramsey Theorem fails, and that every Borel d-regular bipartite graph has a Borel perfect matching, among other examples. Therefore, the Borel Dual Ramsey Theorem and several theorems of descriptive combinatorics are not theories of hyperarithmetic analysis. In the case of the Borel Dual Ramsey Theorem, this answers a question of Astor, Dzhafarov, Montalbán, Solomon & the third author.

1. Introduction

Theorems about Borel sets are often proved using arguments which appeal to some property of Borel sets, rather than proceeding by transfinite recursion on the structure of the set directly. Examples include category arguments, measure arguments, and Borel determinacy arguments. When a theorem has been proved using one of these methods, it is natural to wonder if there are essentially different proofs. Reverse Mathematics provides a framework for answering this kind of curiosity. In this paper we consider the Reverse Mathematics strength of several such theorems, one from Ramsey theory and the rest from descriptive combinatorics.

The Reverse Math strength of the Dual Ramsey Theorem [CS84] has been the topic of several papers [Sim85, MS04, DFSW21, ADM+20]. In this theorem, one starts with a “nice” coloring of the space of partitions of ω into k pieces, and the theorem guarantees a partition of ω into infinitely many pieces, all of whose k-piece coarsenings have the same color. When “nice” means Borel, in [ADM+20] it was shown that the Borel Dual Ramsey Theorem for 3-partitions follows from $\text{CD-PB} + \text{CA}_0^{\omega}$, where CD-PB is the statement “every completely determined Borel set has the property of Baire.”

“Completely determined” refers to a restricted way in which Borel sets can be encoded; see Section 2 for details. This reflects the fact that the proof

Date: June 24, 2021.

Towsner was partially supported by NSF grant DMS-1600263. Westrick was partially supported by NSF grant DMS-1854107 and by the Cada R. and Susan Wynn Grove Early Career Professorship in Mathematics.

1In fact, since CD-PB implies $L_{\omega_1,\omega^-}\text{-CA}_0$, the Borel Dual Ramsey Theorem for 3-partitions follows from $\text{CD-PB} + \Sigma^1_1\text{-IND}$.
of the Borel Dual Ramsey Theorem uses a category argument. In fact, the theorem is also true for colorings which have the property of Baire [PV85].

In [ADM+20], it was left as an open question whether the Borel Dual Ramsey Theorem is a statement of hyperarithmetic analysis. If it were, it would imply that the category argument in the usual proof is not essential, because CD-PB fails in HYP [ADM+20], while by definition every statement of hyperarithmetic analysis holds in HYP.

Theorem 1.1. For any finite $k, \ell \geq 2$, The Borel Dual Ramsey Theorem for k-partitions and ℓ colors fails in HYP. Therefore, the Borel Dual Ramsey Theorem is not a statement of hyperarithmetic analysis.

It remains open whether the Borel Dual Ramsey Theorem implies CD-PB.

Our second motivation comes from the area of descriptive combinatorics. Using the axiom of choice, any d-regular bipartite graph has a perfect matching, and any acyclic graph has a 2-coloring. However, if we restrict attention to Borel perfect matchings and Borel colorings, the matching may no longer exist or the needed number of colors may increase. This area is surveyed in [KM20].

Marks has shown that there is a 3-regular Borel bipartite graph with no Borel perfect matching [Mar16]. The proof uses a Borel determinacy argument, in contrast to the more typical use of measure and category arguments to prove theorems in this area. In a talk given at the ASL Annual Meeting in Macomb in 2018, Marks wondered whether such a big hammer was really needed, and asked for the Reverse Mathematics strength of this theorem. We show that no statement of hyperarithmetic analysis is strong enough.

Theorem 1.2. In HYP, every completely determined Borel d-regular bipartite graph has a completely determined Borel perfect matching.

Statements of hyperarithmetic analysis are among the weakest axioms strong enough to make sense of Borel sets. It would be interesting to know whether Marks’ theorem can be proved via a measure or category argument, two methods which suffice for many theorems of descriptive combinatorics. We do not take on that question here, but for a brief discussion of how it can be formalized, see the end of Section 5.2.

Both results above are consequences of the main theorem of this paper, characterizing those subsets of HYP which HYP believes are completely determined Borel. Recall that $L_{\omega_1^k} \cap 2^\omega = HYP$.

Theorem 1.3. For any $A \subseteq HYP$, the following are equivalent.

1. There is a completely determined Borel code for A in HYP.
2. There is a determined Borel code for A in HYP.
3. A is $\Delta_1(L_{\omega_1^k})$.
Definitions of completely determined and determined Borel codes are given in Section 2. The proof makes essential use of non-standard Borel codes and the method of decorating trees which was introduced in [ADM+20].

In both the Borel Dual Ramsey Theorem and Marks’ theorem, some restriction on the coloring and/or perfect matching is known to be necessary; the failure of these theorems without the Borel condition is witnessed by straightforward choice arguments. Strangely, the failure of these theorems in HYP is witnessed by essentially the same choice arguments, albeit in a more technical form. This is possible due to the following pathology of Borel sets in HYP.

Theorem 1.4. In HYP, there is a completely determined Borel well-ordering of the reals.

We use similar methods to construct choice-flavored counterexamples in HYP to some other theorems of descriptive combinatorics, such as those concerning the prisoner hat problem and various vertex and edge coloring theorems for d-regular graphs.

Having recreated some choice-flavored constructions, we asked how reliably Borel constructions in HYP mimic choice constructions in the real world. We find that the analogy is not perfect, as the following result shows.

Theorem 1.5. In HYP, there is a completely determined Borel acyclic graph where each vertex has degree at most 2, but which has no completely determined Borel 2-coloring.

We give the preliminaries in Sections 2 and 3, the latter of which is devoted entirely to the method of decorating trees, making this paper self-contained for readers already familiar with Reverse Mathematics and hyperarithmetic theory. The main result characterizing the completely determined Borel sets in HYP is given in Section 4. Section 5 contains all of the applications.

2. Preliminaries

We denote elements of $\omega^{\lt \omega}$ by σ, τ, η. We write $\sigma \preceq \tau$ to indicate that σ is an initial segment of τ, and write $\sigma \prec \tau$ if σ is a proper initial segment of τ. We write $\sigma \concat \tau$ for the concatenation of σ and τ. We write $\sigma \concat n$ as an abbreviation for $\sigma \concat (n)$.

Throughout, we assume familiarity with hyperarithmetic theory and reverse mathematics. A standard reference for the former is [Sac90] and for the latter, [Sim09]. We are primarily interested in considering notions within the second order model HYP; this is the model of second-order arithmetic in which the natural numbers are interpreted by the usual natural numbers but the only sets present are the hyperarithmetic sets.

We write O^* for the set of ordinal notations in HYP, and $<_*$ for the computable partial order comparing those notations. We will use $\alpha, \beta, \gamma, \delta$ for elements of O^*. These notations represent the ordinals of HYP because $\alpha \in O^*$ if and only if there is no hyperarithmetic $<_*$-descending sequence.
below α. It is well-known that there elements a in Ω such that <∗ is, in fact, ill-founded below α, but no descending sequence is hyperarithmetic. As usual, we write O for the subset of Ω consisting of actual ordinals—that is, α ∈ O if and only if there is no <∗-descending sequence below α.

When care is needed in the use of notations, we use the standard notation Hα to refer to the set obtained by taking jumps along the notation α. When we only need to refer to a set in the same ≤T-degree as Hα, we use the notation θα. We often abuse notation by identifying ordinal notations with the ordinals they represent, writing for example α + k, or α + O(1) to refer to an ordinal which is a finite successor of α.

Definition 2.1. A tree is a subset of ω<ω closed under initial segments. When T is a tree, we write Tn = {σ | ⟨n⟩∗ σ ∈ T}.

A labeled Borel code is a well-founded tree T ⊆ ω<ω together with a function ℓ whose domain is T and such that:

- for each interior node σ of T, ℓ(σ) is either ∪ or ∩,
- for each leaf η of T, ℓ(η) is a standard code for a clopen subset of 2ω.

When ℓ(σ) = ∪, we call σ a union node, and when ℓ(σ) = ∩, we call σ an intersection node.

We will be considering Borel codes in HYP—that is, T and ℓ are themselves hyperarithmetic, and there is no hyperarithmetic descending sequence in T. Equivalently, T has a height in Ω.

We can ask for codes which make this ordinal height explicit.

Definition 2.2. Let α ∈ Ω. If T ⊆ ω<ω and ρ : T → {β ∈ Ω : β ≤∗ α}, we say that ρ ranks T if for all σ and n such that σ<∗ ⟨n⟩ ∈ T, we have ρ(σ<∗ ⟨n⟩) <∗ ρ(σ). We say T is α-ranked by ρ. We call ρ(⟨⟩) the rank of T.

When T, ℓ is a true Borel code, it encodes a subset |T| of 2ω. Namely:

- if ⟨⟩ is a leaf, T⟨⟩ is the clopen set coded by 2ℓ,
- if ℓ(⟨⟩) = ∪, T codes ∪nTN,
- if ℓ(⟨⟩) = ∩, T codes ∩nTN.

To make this precise in a model of second order arithmetic, we need the notion of an evaluation map.

Definition 2.3. When T is a labeled Borel code and X ∈ 2ω, an evaluation map for X ∈ T is a function f : T → {0, 1} such that:

- if η is a leaf, f(η) = 1 if and only if X is in the clopen set coded by ℓ(η),
- if σ is a union node, f(σ) = 1 if and only if f(σ<∗ ⟨n⟩) = 1 for some n ∈ ω,
- if σ is an intersection node, f(σ) = 1 if and only if f(σ<∗ ⟨n⟩) = 1 for all n ∈ ω.

We say X is in the set coded by T, denoted X ∈ |T|, if there is an evaluation map f for X in T such that f(⟨⟩) = 1.
The statement “for every Borel code T and every X, there is an evaluation map for X in T” is equivalent to $\text{ATR}_0^{\text{DFSW21}}$. In particular, in HYP there are labeled Borel codes for which no evaluation maps exist for any X. In ADM^{+20} this is addressed by introducing the notion of a completely determined Borel code.

Definition 2.4. A labeled Borel code T is *completely determined* if every $X \in 2^\omega$ has an evaluation map in T.

A related notion, named but not studied in ADM^{+20}, is a determined Borel code. Considering a Borel code as a game played by a \lor player against a \land player in the sense of Bla81, the code is called determined if for every X, one of the players has a winning strategy in the game.

Definition 2.5. A labeled Borel code T is *determined* if for every $X \in 2^\omega$, there is a function $f : \subseteq T \to \{0, 1\}$, called a *winning strategy for X in T*, such that

- If σ is a leaf and $f(\sigma)$ is defined, then $f(\sigma) = 1$ if and only if X is in the clopen set coded by $\ell(\sigma)$.
- If σ is a union node, $f(\sigma) = 1$ implies there is some $n \in \omega$ such that $f(\sigma \nabla n) = 1$, and $f(\sigma) = 0$ implies for all $n \in \omega$, if $\sigma \nabla n \in T$ then $f(\sigma \nabla n) = 0$.
- If σ is an intersection node, $f(\sigma) = 0$ implies there is some $n \in \omega$ such that $f(\sigma \nabla n) = 0$, and $f(\sigma) = 1$ implies that for all $n \in \omega$, if $\sigma \nabla n \in T$ then $f(\sigma \nabla n) = 1$.
- $f(\langle \rangle)$ is defined.

It can happen that a Borel code is determined without being completely determined. For example, in HYP, let T be Borel code which is not completely determined. Then the set $\emptyset \cap |T|$, written as a Borel code with \land at the root, is determined but not completely determined in HYP.

Given a Borel code T, we define a code for its complement as follows.

Definition 2.6. If T is a Borel code, let \overline{T} denote the Borel code which uses the same tree, but modifies the labeling function as follows. Change \land to \lor and vice versa at all interior nodes, and at each leaf replace the coded clopen set with its clopen complement.

It is clear that if f is an evaluation map for X in T, then $1 - f$ is an evaluation map for X in \overline{T}, and thus regardless of the model, $X \in |T|$ if and only if $X \not\in |\overline{T}|$.

3. Decorating Trees

The main method we use is a construction from ADM^{+20} which takes a tree T and “decorates it” with additional nodes to create a new Borel code. When we perform this decoration properly, the resulting Borel code will be completely determined in HYP. The results of this section were essentially
proved in [ADM+20], but to keep this paper self-contained, we present them here with more streamlined notation and proofs.

Definition 3.1. Let \(\alpha \) be an ordinal and let \(T \) be a labeled Borel code \(\alpha \)-ranked by \(\rho \). Suppose \(\mathcal{P} \) and \(\mathcal{N} \) are two countable sets of \(\alpha \)-ranked labeled Borel codes. We define the **decoration** of \(T \) by \(\{ \mathcal{P}, \mathcal{N} \} \), denoted \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \), recursively by:

- if \(T \) is a leaf, \(T \) is unchanged,
- otherwise, the children of \(\langle \rangle \) in \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \) are given by:
 - for each child \(T_n \) of \(T \), the tree \(\text{Decorate}(T_n, \mathcal{P}, \mathcal{N}) \) is a child,
 - if \(\langle \rangle \) is a union node, for each \(P \in \mathcal{P} \) where \(P \) has rank \(<_\alpha \rho(\langle \rangle) \), the node \(\text{Decorate}(P, \mathcal{P}, \mathcal{N}) \) is a child, and
 - if \(\langle \rangle \) is an intersection node, for each \(N \in \mathcal{N} \) where \(N \) has rank \(<_\alpha \rho(\langle \rangle) \), the node \(\text{Decorate}(\neg N, \mathcal{P}, \mathcal{N}) \) is a child.

Since \(T \) and all elements of \(\mathcal{P} \cup \mathcal{N} \) are \(\alpha \)-ranked, the restriction on the ranks of \(\mathcal{P} \) and \(\mathcal{N} \) ensures that \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \) is also \(\alpha \)-ranked.

Lemma 3.2. If \(\alpha \in \mathcal{O} \), \(X \not\in |Q| \) for every \(Q \in \mathcal{P} \cup \mathcal{N} \) of rank less than \(\alpha \), and \(T \) is ranked in \(\alpha \) then \(X \in |\text{Decorate}(T, \mathcal{P}, \mathcal{N})| \) if and only if \(X \in |T| \).

Proof. By induction on \(\alpha \). Let \(g \) be the evaluation map for \(X \) in \(T \) and \(h \) the evaluation map for \(X \) in \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \)—since \(\alpha \) is an actual ordinal, both exist and are unique.

If \(T \) is a leaf, this is immediate. Otherwise, consider the children of the root in \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \). Say \(\langle \rangle \) is a union node. If there is some child \(T_n \) in \(T \) which \(g \) assigns to 1, then by the inductive hypothesis, \(h \) must assign 1 to the corresponding child node \(\text{Decorate}(T_n, \mathcal{P}, \mathcal{N}) \) in \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \), so \(h(\langle \rangle) = 1 \). Otherwise, \(g \) assigns 0 to every child of \(\langle \rangle \) in \(T \). Every child of \(\langle \rangle \) in \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \) is either of the form \(\text{Decorate}(T_n, \mathcal{P}, \mathcal{N}) \) or \(\text{Decorate}(P, \mathcal{P}, \mathcal{N}) \); by the inductive hypothesis and the assumption that \(X \not\in |\mathcal{P}| \), \(h \) assigns 0 to both kinds of children, so \(h(\langle \rangle) = 0 \).

The intersection case is symmetric: if \(g \) assigns 0 to any child \(T_n \) of \(\langle \rangle \) then, by the inductive hypothesis, \(h \) must assign 0 to the corresponding child node \(\text{Decorate}(T_n, \mathcal{P}, \mathcal{N}) \) in \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \), so \(h(\langle \rangle) = 0 \). If \(g \) assigns 1 to every child of \(\langle \rangle \) in \(T \) then, since the children \(\langle \rangle \) \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \) are either of the form \(\text{Decorate}(T_n, \mathcal{P}, \mathcal{N}) \) or \(\text{Decorate}(\neg N, \mathcal{P}, \mathcal{N}) \); by the inductive hypothesis and the assumption that \(X \in |\neg N| \), \(h \) assigns 1 to both kinds of children, so \(h(\langle \rangle) = 1 \). \(\square \)

We will be interested in the situation where we carry this operation out in \(HYP \). Note that when \(\alpha \in \mathcal{O}^* \), \(T \) is in \(HYP \), and the collections \(\mathcal{P} \) and \(\mathcal{N} \) are enumerable in \(HYP \) (that is, \(HYP \) contains sequences \(\langle P_n \rangle_{n \in \omega} \) and \(\langle N_n \rangle_{n \in \omega} \) such that \(\mathcal{P} = \{ P_n : n \in \omega \} \) and \(\mathcal{N} = \{ N_n : n \in \omega \} \)), then the tree \(\text{Decorate}(T, \mathcal{P}, \mathcal{N}) \) is in \(HYP \) as well.

Let \(\mathcal{P}_\mathcal{O} \) denote the subset of \(\mathcal{P} \) consisting of codes whose rank is well-founded, and similarly define \(\mathcal{N}_\mathcal{O} \). The key result is the following:
Theorem 3.3. Let $\alpha \in O^* \setminus O$. Suppose that P and N are countable collections of α-ranked decorations, enumerable in HYP, such that for each $X \in HYP$, there is a unique $Q \in P_O \cup N_O$ with $X \in |Q|$. Then there is a computable tree T such that in HYP, $\text{Decorate}(T,P,N)$ is completely determined and $|\text{Decorate}(T,P,N)| = \bigcup_{P \in P_O} |P|$.

Proof. Let T be the tree $\{(), (1)\}$ where $()$ is a union node and $\rho(()) = \alpha$, while (1) is a leaf coding \emptyset which has rank 0.

For technical reasons, it will be convenient to assume that each element of P has an intersection at its root. This is a harmless assumption - given any enumeration of P, we may simply modify each code P in it, increasing its rank by one in order to add a new root which expresses a trivial intersection whose only argument is P. Increasing α by 1 as well, this addition does not endanger any of the hypotheses of the theorem.

The key idea is this: given a hyperarithmetic set X, and the unique $Q \in P_O \cup N_O$ such that $X \in |Q|$, we can find a hyperarithmetic evaluation map for X in $\text{Decorate}(T,P,N)$. We can always find hyperarithmetic evaluation maps for the low-ranked parts of $\text{Decorate}(T,P,N)$. Since many high ranked nodes will have a decorated version of Q as a subtree, we can then systematically assign values of the evaluation map to these nodes.

So let X be given and let γ be the rank of Q. Since $\text{Decorate}(T,P,N)$ is hyperarithmetic and $\gamma \in O$, there is a partially defined evaluation map g_0 defined on all nodes of $\text{Decorate}(T,P,N)$ with rank $\leq \gamma$. (Such a g_0 can be computed in slightly more than γ jumps from $\text{Decorate}(T,P,N)$.)

Suppose $Q \in P$. We extend g_0 to an evaluation map g on all of $\text{Decorate}(T,P,N)$ as follows:

- If σ is a union node with rank $> \gamma$, $g(\sigma) = 1$. Since one of the children of σ is a copy of $\text{Decorate}(Q,P,N)$, which, by Lemma 3.2, g_0 must assign 1 to, this is a correct evaluation map.
- If σ is an intersection node then consider the following set of descendants of σ:

 $$D_\sigma = \{ \tau \in T : \tau \triangleright \sigma, \tau \text{ is a union or leaf,}$$

 $$\text{and for each } \nu \text{ with } \tau \triangleright \nu \triangleright \sigma, \nu \text{ is an intersection} \}.$$

For each $\tau \in D_\sigma$, if $\rho(\tau) \leq \gamma$, then τ is in the domain of g_0, so we know the correct value for σ based on g_0. If $\rho(\tau) > \gamma$, then we shall assign $g(\tau) = 1$, so these nodes can be safely ignored, as they can only help X get into the intersection at σ. We assign 1 to σ if and only if every $\tau \in D_\sigma$ of rank $\leq \gamma$ has been assigned 1 by g_0. This can be done uniformly in one jump of g_0.

Therefore g can be computed from g_0 in one more jump. It is clear that g satisfies the definition of an evaluation map. Finally, g assigns 1 to $()$ because this is a union node of rank $\alpha > \gamma$.

The case where $Q \in N$ is dual, with one small addition to the argument needed to verify the value of $g(())$. We extend g_0 to an evaluation map g by:
If \(\sigma \) is an intersection node with rank \(> \gamma \) then \(g(\sigma) = 0 \). Since \(X \not\in |\neg Q| \) and one of the children is a copy of \(\text{Decorate}(\neg Q, P, N) \), this is a correct evaluation map by Lemma 3.2.

- If \(\sigma \) is a union node with rank \(> \gamma \), define \(D_\sigma \) in a dual way to what was done above, swapping intersections and unions:

\[
D_\sigma = \{ \tau \in T : \tau > \sigma, \tau \text{ is an intersection or leaf},
\text{and for each } \nu \text{ with } \tau > \nu > \sigma, \nu \text{ is a union} \}.
\]

Each \(\tau \in D_\sigma \) of rank \(\leq \gamma \) is in the domain of \(g_0 \). If any \(\tau \in D_\sigma \) has rank \(> \gamma \) then we shall have \(g(\tau) = 0 \), so these nodes can be safely ignored, as they cannot help \(X \) get into the union at \(\sigma \). We assign 1 to \(\sigma \) if and only if some \(\tau \in D_\sigma \) of rank \(\leq \gamma \) has been assigned 1 by \(g_0 \).

Again, \(g \) is an evaluation map which can be computed from \(g_0 \) in one more jump. Now we wish to show that \(g(\langle \rangle) = 0 \). Consider the set \(D_{\langle \rangle} \). Because every element of \(P \) has an intersection at its root, and \(\langle \rangle \) has only a single leaf child \(T \), every child of \(\langle \rangle \) in \(\text{Decorate}(T, P, N) \) is an intersection or leaf node. Therefore, \(D_{\langle \rangle} \) is exactly the set of children of \(\langle \rangle \), and these all take the form \(\text{Decorate}(P, P, N) \) for some \(P \in P \), plus the single leaf, which has been unchanged by decoration. For each non-leaf child \(\tau \) with rank \(\leq \gamma \), \(X \not\in |P| \), and thus by Lemma 3.2, \(X \not\in |\text{Decorate}(P, P, N)| \) and \(g_0(\tau) = 0 \). Therefore, \(g(\langle \rangle) = 0 \), as needed. \(\Box \)

4. Characterization of Borel sets in \(HYP \)

Our main theorem is the following. Considering Gödel’s constructible universe \(L = \bigcup_{\mu \in \text{Ord}} L_\mu \), recall that \(L_{\omega^c} \cap 2^\omega = HYP \).

Theorem 4.1. For any \(A \subseteq HYP \), the following are equivalent.

1. There is a completely determined Borel code for \(A \) in \(HYP \).
2. There is a determined Borel code for \(A \) in \(HYP \).
3. \(A \) is \(\Delta^1_1(L_{\omega^c}) \).

Before proving this, recall that for any \(\Sigma_1 \) formula \(\theta(x) \) in the language of set theory, we have that \(L_{\omega^c} \models \theta(x) \) if and only if there is some \(\alpha < \omega^c \) such that \(L_\alpha \models \theta(x) \). Therefore, it will be useful to bound the complexity of deciding facts about \(L_\alpha \). In short, it is well-known that \(\theta^{\omega^c} \) can compute a presentation of \(L_\alpha \), but we give a (rather standard) proof here, because we also need to take a little care with the ordinal notations when using this claim. Specifically, we give an algorithm which computes a presentation of \(L_\alpha \) given \(H_{\omega \cdot \alpha} \), where \(\omega \cdot \alpha \) is the notation defined as follows. Let \(\omega \cdot \alpha = 3 \cdot 5^e(\alpha) \), where \(e \) is defined recursively by

\[
\phi_{\epsilon(\alpha)}(n) = \begin{cases}
\omega \cdot \alpha_n & \text{if } \alpha = \lim_n \alpha_n \\
\omega \cdot (\alpha - 1) + n & \text{if } \alpha \text{ is a successor.}
\end{cases}
\]
Here the “$+n$” in the second line is shorthand for a height n tower of 2's. Representing the notations for $\omega \cdot \alpha$ in this way gives us a uniform procedure which finds, for each $\beta <_s \alpha$, compatible notations $\omega \cdot \beta <_s \omega \cdot \alpha$.

Proposition 4.2. There is a computable procedure which, given $\alpha \in \mathcal{O}$ and $H_{\omega \cdot \alpha}$, returns a presentation Θ_α of L_α (in the language of set theory, $\{\epsilon\}$). Furthermore, the procedure can be chosen so that the presentations have two nice properties:

(1) Whenever $\beta <_s \alpha$, the restriction of Θ_α to the domain of Θ_β is equal to Θ_β and is an ϵ-initial segment of Θ_α.

(2) The common Θ_ω is a computable copy of L_ω. In particular there is a computable bijection between the natural numbers and their representatives in Θ_ω.

Proof. We consider the domain of each Θ_β as a subset of $\mathbb{N} \times \mathbb{N}$. For each infinite successor notation $\beta \leq_1 \alpha$, we reserve the the column $\mathbb{N} \times \{\beta\}$ for the elements of $\Theta_\beta \setminus \Theta_{\beta-1}$.

We proceed by effective transfinite recursion, and begin with a computable presentation Θ_ω of L_ω, using $\mathbb{N} \times \{\omega\}$ as the domain, and choosing this presentation to satisfy the second niceness condition above.

Given $\alpha = \lim_n \alpha_n$ and $H_{\omega \cdot \alpha}$, we define $\Theta_\alpha = \bigcup_n \Theta_{\alpha_n}$, which is uniformly computable from $H_{\omega \cdot \alpha}$ because the nth column of $H_{\omega \cdot \alpha}$ suffices to compute all atomic facts about Θ_α involving elements from Θ_{α_n}.

Given $\alpha = \beta + 1$ and $H_{\omega \cdot \alpha}$, we can uniformly obtain $H_{\omega \cdot \beta+n}$ for each n. Use $H_{\omega \cdot \beta}$ to obtain Θ_β, and then add elements of $\mathbb{N} \times \{\alpha\}$ to the domain of Θ_α as follows. Let $(\phi_1, \zeta_1), (\phi_2, \zeta_2), \ldots$ be some canonical enumeration of formula-parameter pairs (with the parameters in \bar{z} drawn from Θ_β) such that

$$\text{Def}(\Theta_\beta) = \{\{y \in \Theta_\beta : \Theta_\beta \models \phi_i(y, \zeta_i)\} : i \in \omega\}.$$

For each pair (ϕ_i, ζ_i), ask $H_{\omega \cdot \alpha}$ whether there is already some $w \in \Theta_\beta$ such that for all $y \in \Theta_\beta$,

$$\Theta_\beta \models y \in w \iff \Theta_\beta \models \phi_i(y, \zeta_i).$$

Similarly ask if there is some $j < i$ such that for all $y \in \Theta_\beta$,

$$\Theta_\beta \models \phi_j(y, \zeta_j) \iff \Theta_\beta \models \phi_i(y, \zeta_i).$$

If either answer is yes, the defined set is already accounted for and can be ignored; if not, use a new element of $\mathbb{N} \times \{\alpha\}$ to represent a set with membership facts as above. Because Θ_β is computable from $H_{\omega \cdot \beta}$ and all finite jumps of this set are available in $H_{\omega \cdot \alpha}$, the latter can compute all these new facts. \(\square\)

Proof of Theorem 4.1. (1) \implies (2) is clear.

(2) \implies (3). If T is a determined Borel code for A in HYP, then the statement “f is a winning strategy for X in T” can be expressed in the language of set theory using only bounded quantifiers, so both A and $\text{HYP} \setminus A$ are $\Sigma_1(L_{\omega^1} \bar{\epsilon})$.

We apply Theorem 3.3 to the

we see this set has effective Borel complexity

The effective Borel complexity of "

to elements of

and similarly for

N ˆ

function such that

the second niceness condition in Proposition 4.2. Let

uniformly arithmetic in that diagram.

uniformly computes the atomic diagram of

z

constant that depends on on

which represent the parameters in ˆz are in Lγ. We shall define Pβ to satisfy

|Pβ| = \{X ∈ Lβ : β is least such that Lβ |= ϕ(X, z)\}

and similarly for Nβ but using ψ. We now show how to computably enumerate α-ranked Borel codes for these sets Pβ and Nβ, such that Pβ and Nβ each have rank ω · β + O(1).

By the first niceness condition in Proposition 4.2 if β ≥∗ γ, then the elements of dom Θβ which represent the parameters in ˆz are in fact elements of dom Θ, and do not depend on β. Therefore, without confusion we may also use the notation ˆz to refer to those elements of dom Θγ which represent the parameters ˆz from Lω_1^{ck}.

Thus we have for all X ∈ 2^ω and β ≥∗ γ,

Lβ |= ϕ(X, z) ⇐⇒ ∃x ∈ Θβ[x represents X and Θβ |= ϕ(x, ˆz)]

The effective Borel complexity of “Θβ |= ϕ(x, ˆz)” is ω · β + O(1), with a constant that depends on on ϕ, specifically on the number of quantifiers in ϕ (including bounded quantifiers, which will still require an unbounded search through dom Θβ in second order arithmetic). This is because Hωβ uniformly computes the atomic diagram of Θβ, so the truth of ϕ(x, ˆz) is uniformly arithmetic in that diagram.

The effective Borel complexity of “x represents X” is also ω · β + O(1) using the second niceness condition in Proposition 4.2. Let h be a computable function such that h(n) ∈ dom Θω represents the number n. Then

“x represents X” ⇐⇒ ∀n [X(n) = 1 ⇐⇒ Θβ |= h(n) ∈ x].

Therefore, defining

| ˆPβ | := \{X ∈ 2^ω : Lβ |= ϕ(X, ˆz)\}

we see this set has effective Borel complexity ω · β + O(1). Furthermore, the code ˆPβ is obtainable and ω · β + O(1)-ranked, uniformly in β. We define ˆNβ similarly. Then the desired decorations are

Pβ := ˆPβ \ \left(\bigcup_{ν < * β} ˆPν \right)

and similarly for Nβ. These decorations are also uniformly ω · β + O(1)-ranked.

The computable procedure β ↦ Pβ outlined above can also be applied to elements of O^*, producing pseudo-ranked decorations for all β <∗ α. We apply Theorem 3.3 to the (ω · α)-ranked sets of decorations P and N.
constructed here. The result is a completely determined Borel code in HYP which defines the set $A = \bigcup_{\beta \in \mathcal{O}} |P_\beta|$, as desired. □

5. Applications

In light of Theorem 4.1, we can show that various sets have completely determined Borel codes in HYP by specifying an ω^k-recursive algorithm for computing them. This allows us to know what HYP believes about various theorems involving Borel sets. We have selected some representative examples from a variety of areas. The reader can surely supply many more examples than the ones given in this section.

In this section we assume familiarity with α-recursive computations; a reference is [Sho77]. Theorem 4.1 also shows that in HYP, the determined Borel sets and the completely determined Borel sets coincide. In this section, we simply use the terminology “Borel” to refer to this common concept.

5.1. Well-Ordering and the Prisoner Hat Problem.

Corollary 5.1. In HYP, there is a Borel well-ordering of the universe.

Proof. We will associate hyperarithmetic reals $X \in 2^\omega$ with the value $o(X) = (\beta, e)$ where β is least such that $X \leq_T \emptyset^\beta$ and e is least such that $X = \phi_e^{\emptyset^\beta}$, and encode the ordering $X < Y$ if and only if $o(X) < o(Y)$, where $<$ is the lexicographic ordering on pairs. Since $<$ is certainly a well-ordering, this will give the claim.

On input X, Y, our algorithm can search for the first β such that either $X \leq_T \emptyset^\beta$ or $Y \leq_T \emptyset^\beta$, and we can then check if $o(X) < o(Y)$ by checking an initial segment of the sets $(e)^\beta$ to see which of X and Y is computed first. □

Next recall the infinite prisoner hat problem: we assume there is a row of hat-wearing prisoners with order type ω. The hats can be red or blue. The prisoners are facing toward the infinite end of the line, so that each prisoner can see all the hat colors in front of them, but not their own hat color or the color of any previous hat. The prisoners will be asked to name their own hat color, starting with the 0th prisoner and going in order, so that each prisoner hears all the previous guesses. They win if they make one or fewer mistakes in total.

It is well-known (see for example [HT08]) that while the prisoners can win this game with the axiom of choice, there is no Borel winning strategy for them. But in HYP, the situation mirrors the real world and does so with the usual proof.

Formally, a Borel winning strategy for the prisoners is a Borel subset $B \subseteq 2^{<\omega} \times 2^\omega$. A prisoner who hears the sequence $\tau \in 2^{<\omega}$ and sees the sequence $Y \in 2^\omega$ in front of them follows the strategy by guessing blue if $(\tau, Y) \in B$ and guessing red otherwise.
Corollary 5.2. In \(HYP \), there is a Borel winning strategy for the prisoners in the infinite prisoner hat problem.

Proof. By Proposition 5.3, as part of an \(\omega^{ck}_1 \)-computation, we may search for the least real which has a given arithmetic property.

The strategy for the prisoners is then defined in the classical way, which we include for completeness. Each prisoner, hearing \(\tau \) and seeing \(Y \), begins by identifying the least real \(X \) which agrees up to finitely many errors with \(\tau \downarrow \lnot Y \). Since all prisoners use the same well-ordering, they all identify the same \(X \). The 0th prisoner uses their guess to communicate the parity of errors between \(X \) and the rest of the hats. The \(i \)th prisoner, upon hearing the correct guesses of prisoners 1 through \(i-1 \), can then deduce their own hat color correctly by computing the parity of errors between \(X \) and the hats they have seen and heard. Observe that this prisoner strategy is \(\omega^{ck}_1 \)-computable, and thus Borel in \(HYP \). \(\square \)

5.2. Graphs. On the basis of the previous subsection, one might wonder if any construction that works by choice in the real world would work in a Borel way in \(HYP \). The next examples show that this is not the case. Recall that a \(2 \)-coloring of a graph \(G = (V,E) \) is a function \(c : V \to 2 \) that assigns adjacent vertices to different colors. Classically, a graph has a 2-coloring if and only if it has no odd cycles. In second order arithmetic, we consider graphs for which \(V \subseteq 2^{\omega} \). The graph \(G \) is Borel if \(V \) is Borel and \(E \) is a Borel subset of \(V \times V \).

Proposition 5.3. In \(HYP \), there is a Borel acyclic graph which has no Borel 2-coloring.

Proof. Fix \(\alpha^* \in \varnothing^* \setminus \varnothing \). For each \(\alpha <_{\text{H}} \alpha^* \) and \(e \in \omega \), we fix two distinct computable reals \(X_{\alpha,e,0} \) and \(X_{\alpha,e,1} \).

We can describe a computation in stages indexed by \(\beta \in \varnothing \). At the stage \(\beta \), we decide all edges between pairs of reals \((X,Y)\) such that \(\beta \) is least so that both \(X \) and \(Y \) are \(\varnothing^{\beta}_{\varnothing} \)-computable.

We consider those \(\alpha \leq \beta \) and those \(e \) so that \(\varnothing^{\beta}_{\varnothing} \) appears to be a Borel code for a Borel 2-coloring, and \(\beta \) is least so that there are evaluation maps for both \(X_{\alpha,e,0} \) and \(X_{\alpha,e,1} \) in \(\varnothing^{\beta}_{\varnothing} \). For each such pair \(\alpha,e \) we choose either one or two fresh reals Turing equivalent to \(\varnothing^{\beta}_{\varnothing} \), and we add edges to create a path between \(X_{\alpha,e,0} \) and \(X_{\alpha,e,1} \) of length 2 or 3 (whichever is incompatible with the colors given to \(X_{\alpha,e,0} \) and \(X_{\alpha,e,1} \)). We place no other edges. \(\square \)

Given \(k \in \omega \), recall that a \(k \)-edge-coloring of a graph \(G = (V,E) \) is a function \(c : E \to k \) with the property that no two adjacent edges are assigned the same color. Vizing’s Theorem states that if the maximum degree of the vertices in \(G \) is \(k \), for some \(k \in \omega \), then \(G \) has an edge coloring with at most \(k+1 \) colors (see, e.g., [Die18, Theorem 5.3.2]). In the special case when \(G \) has no odd cycles (i.e., when \(G \) is bipartite), König showed that \(G \) has a \(k \)-edge coloring (see [Die18, Proposition 5.3.1]). On the other hand, Marks
has shown [Mar16] that there are n-regular acyclic Borel graphs with a Borel bipartition which require as many as $2n - 1$ colors for a Borel edge coloring.

Proposition 5.4. In HYP, for every $k \geq 3$, there is a Borel acyclic graph with vertices of maximum degree k with no Borel $(k + 1)$-edge-coloring.

Proof. Let $N = \binom{k+1}{2}(k-1) + 1$. (We have chosen N so that when N graphs are put into $\binom{k+1}{2}$ categories, some category contains at least k graphs.) Fix $\alpha^* \in \mathcal{O}^* \setminus \mathcal{O}$. For each $\alpha < \alpha^*$ and $e \in \omega$, we choose distinct computable reals $C_{\alpha,e}^{\beta}, \ldots, C_{\alpha,e}^{N}, V_{\alpha,e}^{1}, \ldots, V_{\alpha,e}^{N}, W_{\alpha,e}^{1}, \ldots, W_{\alpha,e}^{N}$.

As in the proof of Theorem 5.3, we build a graph in stages $\beta \in \mathcal{O}$ so that at stage β, we determine all edges between pairs of reals (X,Y), where β is the smallest so that \emptyset^β computes both X and Y.

At stage $\beta = 0$, for every $\alpha < \alpha^*$ and $e \in \omega$, and for $1 \leq i \leq N$, we connect $V_{\alpha,e}^{i}$ and $C_{\alpha,e}^{i}$ with an edge, and we connect $W_{\alpha,e}^{i}$ and $C_{\alpha,e}^{i}$ with an edge. Hence, for each $\alpha \in \mathcal{O}^*$ and $e \in \omega$, we have N disjoint paths of length two, each with a central ‘C’ vertex and leaf vertices ‘V’ and ‘W’. We will refer to this collection of N paths as the (α,e) computable subgraph.

At stage $\beta > 0$, we handle all pairs (α,e), where $\alpha < \beta$ and $e \in \omega$, such that \emptyset^α_e appears to be a Borel code for a $(k+1)$-edge-coloring, and β is the first ordinal after α so that \emptyset^β computes evaluation maps for every edge in the (α,e) computable subgraph. Given such a pair (α,e), we select a fresh vertex $X_{\alpha,e}$ that is Turing equivalent to \emptyset^β. We then find k paths of length two in the (α,e) computable subgraph that all use the same two colors. For each of these paths, we connect the central ‘C’ vertex to the new vertex $X_{\alpha,e}$. The given $(k+1)$-edge-coloring of the (α,e) computable subgraph cannot be extended to a $(k+1)$-edge-coloring of the extended graph, for $X_{\alpha,e}$ has degree k, and there are only $k - 1$ colors available for its edges.

In Propositions 5.3 and 5.4, the graph-builder has a source of power because the graph-colorer is not able to wait to see all the neighbors of a given vertex. If we restrict attention to connected graphs or to d-regular graphs, the graph-colorer may now have the upper hand.

Proposition 5.5. In HYP, every connected Borel graph with no odd cycles has a Borel 2-coloring.

Proof. Let E be a Borel code for the edges of the graph.

Fix a real X_0. At stage β of our computation, we consider those X such that β is least so that there exist $X_0, \ldots, X_n \leq_T \emptyset^\beta$ with $X_n = X$ and evaluation maps $g_0, \ldots, g_{n-1} \leq_T \emptyset^\beta$ witnessing that $(X_i, X_{i+1}) \in |E|$ for all $i < n$.

We color X by taking the first such path and coloring X with 0 if and only if n is even. Since the graph is assumed to be connected, each X is colored at some stage β. Since the graph has no odd cycles, this is a well-defined 2-coloring. □
For the rest of this section, \(d \) is any natural number.

Lemma 5.6. Suppose \(G \) is a Borel \(d \)-regular graph in \(\text{HYP} \). Then for every \(X \in V(G) \), there is a computable ordinal \(\beta \) such that \(\emptyset^\beta \) computes an enumeration of the connected component of \(X \) together with all evaluation maps needed to verify the component.

Proof. Observe that for each \(X \), there are exactly \(d \) neighbors, each hyperarithmetic, and, for each neighbor, a single evaluation map is needed to verify the edge, which is also hyperarithmetic. So there is a unique least computable ordinal \(\beta \) large enough that \(\emptyset^\beta \) computes \(X \), all \(d \) neighbors, and all \(d \) evaluation maps witnessing the edges. Similarly, for each distance \(k \), there is a least \(\beta \) such that \(\emptyset^\beta \) computes everything needed to enumerate and verify the set of vertices at distance at most \(k \) from \(X \). Here is where it is used that \(G \) is \(d \)-regular: for each \(k \) this least \(\beta \) can be recognized in a \(\Sigma^1_1 \) way. Thus by \(\Sigma^1_1 \)-bounding, there is some \(\beta \in \mathcal{O} \) such that \(\emptyset^\beta \) computes all vertices and edge-witnesses of the connected component of \(X \). With another couple of jumps, these vertices and witnesses can be enumerated in an organized way. \(\square \)

Proposition 5.7. In \(\text{HYP} \), every Borel \(d \)-regular graph with no odd cycles has a Borel 2-coloring.

Proof. Each real in \(X \) has a countable connected component in the given Borel graph. In particular, if we are given a set \(Y \) whose columns consist of all the path-neighbors of \(X \) together with all the evaluation maps needed to verify them, we can verify in a hyperarithmetic way that it really is the entire connected component. By Lemma 5.6, if we search for such \(Y \), we will find one.

At stage \(\beta \), we will color those \(X \) such that \(\beta \) is least so that \(\emptyset^\beta \) computes an enumeration of the connected component of \(X \) together with all evaluation maps needed to verify the component.

When we find such an enumeration, we choose the one whose index (that is, the \(e \) such that \(\phi_e^\emptyset \) is the desired enumeration) is least, and color each \(X \) in the component based on whether it has even distance to the vertex listed first in \(\phi_e^\emptyset \). Since the graph has no odd cycles, this is a well-defined 2-coloring. \(\square \)

Proposition 5.8. In \(\text{HYP} \), every Borel \(d \)-regular graph has a Borel \((d + 1)\)-edge-coloring.

Proof. Suppose \(E \) is a Borel \(d \)-regular graph in \(\text{HYP} \). At stage \(\beta \), we consider the connected components of \(E \) for which \(\beta \) is the least ordinal such that \(\emptyset^\beta \) computes an enumeration \(Y \) of the vertices in the component, together with all evaluation maps needed to verify the edges. (By Lemma 5.6, every connected component of \(E \) will be handled at some stage \(\beta \).) Given such a connected component \(C \), we pick the least such enumeration \(Y \) (the one given by the least \(e \) such that the columns of \(Y = \phi_e^\emptyset \) enumerate the component
with all supporting evaluation maps). We use the ordering of the vertices of C given by Y to obtain a \emptyset^β-computable $(d + 1)$-branching tree T, whose nodes represent partial $(d + 1)$-edge-colorings of C. By Vizing’s Theorem (see [Die18, Theorem 5.3.1]), T has an infinite path. We use the left-most path (computable in $\emptyset^\beta + 1$) to assign colors to the edges in C.

We finish this section by showing that Marks’ theorem for perfect matchings fails in HYP. Recall that given a graph G, a perfect matching is a subset $P \subseteq E(G)$ such that every vertex in the graph is an endpoint of exactly one edge from P. A Borel bipartite graph is a Borel graph which has Borel 2-coloring to witness that it is bipartite.

Theorem 5.9 (Marks [Mar16]). For every $d > 1$, there exists a Borel d-regular bipartite graph with no Borel perfect matching. Furthermore, this graph can be chosen to be acyclic and Borel bipartite.

Proposition 5.10. In HYP, every Borel d-regular bipartite graph has a Borel perfect matching.

Proof. Given a Borel d-regular bipartite graph E, at stage β we consider those connected components of E for which β is the least ordinal that computes an enumeration of the connected component, together with the sequence of evaluation maps needed to verify the component.

For each component, we fix the least enumeration Y of that component. The component itself is d-regular bipartite, and it is well-known (see e.g. [Die18, Corollary 2.1.3]) that every d-regular bipartite graph has a perfect matching. So the set of perfect matchings for the component can be given as a non-empty $\Pi^0_1(Y)$ class, and $\emptyset^{\beta + 1}$ can compute its leftmost perfect matching, which we apply to the connected component being considered.

By Lemma 5.6, every component of E will eventually be found and a perfect matching computed on it. □

Since the theories of hyperarithmetic analysis are among the weakest axioms strong enough to make sense of Borel sets, the fact that Borel sets in HYP do not act like the real-world ones is not too surprising. But it does establish the theories of hyperarithmetic analysis as reasonable base theories for the more interesting thrust of Marks’ question: whether his theorem could be proved by measure or category methods.

In particular, we would be curious to know if Marks’ theorem follows from CD-PB or CD-M. Here CD-M is the principle “every completely determined Borel set is measurable” (see [Wes20]). This question is slightly different than the (also open) question of whether the conclusion of Marks’ theorem can be strengthened rule out a measurable (or Baire measurable) perfect matching with respect to some Borel measure (or Polish topology) on the vertices of the graph.\footnote{When d is even, there are partial results. Conley and Kechris [CK13] generalized a result of Laczkovich [Lac88] to show that when d is even, there is a d-regular Borel bipartite graph which has no measurable perfect matching for a certain natural measure.} The difference arises because we cannot rule out...
the possibility that measure or category is used in some creative way in an alternate proof, for example by being applied to some object other than the purported matching.

5.3. Borel Dual Ramsey Theorem. We recall the statement of the Borel Dual Ramsey Theorem. First, we need some notation.

Definition 5.11. For \(k \in \mathbb{N} \cup \{\omega\} \), \((\omega)^k\) is the set of partitions of \(\omega \) into exactly \(k \) nonempty pieces. When \(p \in (\omega)^\omega \), we write \((p)^k\) for the set of coarsenings of \(p \) into exactly \(k \) blocks.

The Dual Ramsey Theorem says:

For all finite \(k, \ell \geq 1 \), if \((\omega)^k = C_0 \cup \cdots \cup C_{\ell-1}\) where each \(C_i \) is Borel then there exists \(p \in (\omega)^\omega \) and an \(i < \ell \) such that \((p)^k \subseteq C_i\).

Theorem 5.12. In \(HYP \), the Borel Dual Ramsey Theorem fails.

Proof. We show this even with \(k = \ell = 2 \).

Given \(p \in (\omega)^\omega \) with \(p = \bigcup_i p_i \) and a monotone function \(f \), let us define \(f(p) \in (\omega)^2 \) so that \(f(p) = q_0 \cup q_1 \) where \(q_1 = \bigcup_i p_{f(i)} \) and \(q_0 = \omega \setminus q_1 \). By a finite modification of \(f(p) \), we mean \(f(p) = q_0 \cup q_1 \) where \(q_1 = \bigcup_{i \geq n} p_{f(i)} \) and \(q_0 = \omega \setminus q_1 \). The important properties are that the finite modifications are pairwise distinct and whenever \(q \) is a finite modification of \(f(p) \), \(q \leq_T f \oplus p \) and \(f \leq_T q \oplus p \).

For each \(\beta \), let \(f_\beta \) be a function Turing equivalent to \(\emptyset^{\beta+1} \) and which is eventually larger than every function computable from \(\emptyset^\beta \).

Let \(p^0_\beta, \ldots, p^n_\beta, \ldots \) enumerate those elements of \((\omega)^\omega\) such that \(\beta \in \emptyset^\beta \) with \(p^i_\beta \leq \emptyset^\beta \). We recursively choose, for each \(p^i \), two elements \(q^i_\beta^0, q^i_\beta^1 \in \omega^2 \) by letting \(q^i_\beta^0 \) be the first finite modification of \(f_\beta(p^i_\beta) \) distinct from all \(q^j_\beta^b \) with \(j < i \) and \(q^i_\beta^1 \) the first finite modification of \(f_\beta(p^i_\beta) \) distinct from all \(q^j_\beta^b \) and also \(q^i_\beta^0 \).

Observe that if \(q_\beta^{i,b} = q_\beta^{i',b'} \) then \(\beta = \beta' \), and therefore \(i = i' \) and \(b = b' \). if \(\beta' < \beta \) then \(q_\beta^{i',b'} \leq_T f_\beta' \oplus p^{i'}_\beta \leq_T \emptyset^{\beta'+1} \), while \(\emptyset^{\beta+1} \leq_T f_\beta \leq_T p^i_\beta \oplus q_\beta^{i,b} \) and, since \(p^i_\beta \leq_T \emptyset^\beta \), we must have \(q_\beta^{i,b} \not\leq_T \emptyset^\beta \).

By construction, for each \(\beta \), the \(q_\beta^{n,b} \) can be uniformly enumerated by \(\emptyset^{\beta+k} \) for some \(k \) large enough to carry out these computations. So at stage \(\beta + k \), we color all the \(q_\beta^{n,0} \) with color 0 and all other elements of \((\omega)^2\) which are computable from \(\emptyset^{\beta+1} \) which have not already been colored with color 1.

For any \(p \in (\omega)^\omega \cap HYP \), we have \(p = p^0_\beta \) for some \(i, \beta \), and we have \(q_\beta^{n,0} \in C_0 \) and \(q_\beta^{n,1} \in C_1 \), so \((p)^2 \not\subseteq C_0 \) and \((p)^2 \not\subseteq C_1 \). Therefore the Borel Dual Ramsey Theorem fails in \(HYP \). \(\square \)
References

Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6395, USA
E-mail address: htowsner@math.upenn.edu
URL: http://www.math.upenn.edu/~htowsner

Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6395, USA
E-mail address: roseweis@math.upenn.edu
URL: http://www.math.upenn.edu/~roseweis

Department of Mathematics, Penn State University, University Park, PA 16802, USA
E-mail address: westrick@psu.edu
URL: http://www.personal.psu.edu/lzw299/