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The thresholding covariance estimator has nice asymptotic properties for estimating sparse large covariance matrices, but it often has
negative eigenvalues when used in real data analysis. To fix this drawback of thresholding estimation, we develop a positive-definite �1-
penalized covariance estimator for estimating sparse large covariance matrices. We derive an efficient alternating direction method to solve
the challenging optimization problem and establish its convergence properties. Under weak regularity conditions, nonasymptotic statistical
theory is also established for the proposed estimator. The competitive finite-sample performance of our proposal is demonstrated by both
simulation and real applications.
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1. INTRODUCTION

Estimating covariance matrices is of fundamental impor-
tance for an abundance of statistical methodologies. Nowa-
days, the advance of new technologies has brought massive
high-dimensional data into various research fields, such as func-
tional magnetic resonance imaging (fMRI) imaging, web min-
ing, bioinformatics, climate studies and risk management, and
so on. The usual sample covariance matrix is optimal in the
classical setting with large samples and fixed low dimensions
(Anderson 1984), but it performs very poorly in the high-
dimensional setting (Marčenko and Pastur 1967; Johnstone
2001). In the recent literature, regularization techniques have
been used to improve the sample covariance matrix estima-
tor, including banding (Wu and Pourahmadi 2003; Bickel and
Levina 2008a), tapering (Furrer and Bengtsson 2007; Cai,
Zhang, and Zhou 2010), and thresholding (Bickel and Levina
2008b; El Karoui 2008; Rothman, Levina, and Zhu 2009). Band-
ing or tapering is very useful when the variables have a natural
ordering and off-diagonal entries of the target covariance ma-
trix decay to zero as they move away from the diagonal. On the
other hand, thresholding is proposed for estimating permutation-
invariant covariance matrices. Thresholding can be used to pro-
duce consistent covariance matrix estimators when the true co-
variance matrix is bandable (Bickel and Levina 2008b; Cai and
Zhou 2012a). In this sense, thresholding is more robust than
banding/tapering for real applications.

Let �̂n = (σ̂ij )1≤i,j≤p be the sample covariance matrix.
Rothman, Levina, and Zhu (2009) defined the general thresh-
olding covariance matrix estimator as �̂thr = {sλ(σ̂ij )}1≤i,j≤p,
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where sλ(z) is the generalized thresholding function. The gen-
eralized thresholding function covers a number of commonly
used shrinkage procedures, for example, the hard threshold-
ing sλ(z) = zI{|z|>λ}, the soft thresholding sλ(z) = sign(z)(|z| −
λ)+, the smoothly clipped absolute deviation thresholding (Fan
and Li 2001), and the adaptive lasso thresholding (Zou 2006).
Consistency results and explicit rates of convergence have been
obtained for these regularized estimators in the literature, for
example, Bickel and Levina (2008a, b), El Karoui (2008),
Rothman, Levina, and Zhu (2009), and Cai and Liu (2011).
The recent articles by Cai and Zhou (2012a, b) have estab-
lished the minimax optimality of the thresholding estimator for
estimating a wide range of large sparse covariance matrices un-
der commonly used matrix norms. The existing theoretical and
empirical results show no clear favoritism to a particular thresh-
olding rule. In this article, we focus on the soft-thresholding
because it can be formulated as the solution of a convex opti-
mization problem. Let ‖ · ‖F be the Frobenius norm and | · |1
be the element-wise �1-norm of all off-diagonal elements. Then
the soft-thresholding covariance estimator is equal to

�̂ = arg min
�

1

2
‖� − �̂n‖2

F + λ|�|1. (1)

However, there is no guarantee that the thresholding estimator
is always positive definite. Although the positive-definite prop-
erty is guaranteed in the asymptotic setting with high probabil-
ity, the actual estimator can be an indefinite matrix, especially
in real data analysis. To illustrate this issue, we consider the
Michigan lung cancer gene expression data (Beer et al. 2002),
which have 86 tumor samples from patients with lung adeno-
carcinomas and 5217 gene expression values for each sample.
More details about this dataset are referred to Beer et al. (2002)
and Subramaniana et al. (2005). We randomly chose p genes
(p = 200, 500) and obtained the soft-thresholding sample cor-
relation matrix for these genes. We repeated the process 10 times
for p = 200 and 500, respectively, and each time the threshold-
ing parameter λ was selected via the fivefold cross-validation.
We found that none of these soft-thresholding estimators would
become positive definite. On average, there are 22 and 124
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(A) p = 200: the minimal 30 eigenvalues
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(B) p = 500: the minimal 130 eigenvalues

Figure 1. Illustration of the indefinite soft-thresholding estimator in the Michigan lung cancer data.

negative eigenvalues for the soft-thresholding estimator for
p = 200 and 500, respectively. Figure 1 displays the 30 smallest
eigenvalues for p = 200 and the 130 smallest eigenvalues for
p = 500.

From both methodological and practical perspectives, the
positive-definite property is crucial for any covariance matrix
estimator. First of all, any statistical procedure that uses the nor-
mal distribution requires a positive-definite covariance matrix,
otherwise the density function is ill defined. Two well-known
examples are the parametric bootstrap method and the quadratic
discriminant analysis. Second, there are important statistical
methods that do not use the normal distribution but still could not
be carried out without a positive-definite covariance matrix es-
timator. The celebrated Markowitz portfolio optimization prob-
lem is one such example. We will provide more detailed discus-
sion and examples in Section 3.2 to illustrate the importance of
a positive-definite covariance matrix estimator in the Markowitz
portfolio optimization problem. To deal with the indefiniteness
issue in covariance matrix estimation, one possible solution is
to use the eigen-decomposition of �̂ and project �̂ into the con-
vex cone {� � 0}. Assume that �̂ has the eigen-decomposition
�̂ = ∑p

i=1 λ̂iv
T
ivi , and then a positive semidefinite estimator �̃

+

can be obtained by setting �̃
+ = ∑p

i=1 max(λ̂i , 0)vT
ivi . How-

ever, this strategy does not work well for sparse covariance
matrix estimation, because the projection destroys the sparsity
pattern of �̂. Consider the Michigan data again, after semidef-
inite projection, the soft-thresholding estimator has no zero
entry.

In order to simultaneously achieve sparsity and positive
semidefiniteness, a natural solution is to add the positive
semidefinite constraint to (1). Consider the following con-
strained �1 penalization problem

�̂
+ = arg min

��0

1

2
‖� − �̂n‖2

F + λ|�|1. (2)

Note that the solution to (2) could be positive semidefinite. To
obtain a positive-definite covariance estimator, we can consider

the positive-definite constraint {� � ε I} for some arbitrarily
small ε > 0. Then the modified �̂

+
is always positive definite.

In this work, we focus on solving the positive-definite �̂
+

as
follows

�̂
+ = arg min

��ε I

1

2
‖� − �̂n‖2

F + λ|�|1. (3)

It is important to note that ε is not a tuning parameter like λ.
We simply include ε in the procedure to ensure that the smallest
eigenvalue of the estimator is at least ε. If one knows that the
smallest eigenvalue of the true covariance estimator is bounded
below by a positive number δ′, then ε can be δ′. To fix the idea,
we use ε = 10−5 in all our numerical examples.

Despite its natural motivation, (3) is actually a very challeng-
ing optimization problem due to the positive-definite constraint.
Rothman (2012) considered a slightly perturbed version of (3)
by adding a log-determinant barrier function:

�̆
+ = arg min

��0

1

2
‖� − �̂n‖2

F − τ log det(�) + λ|�|1, (4)

where the barrier parameter τ is a small positive constant,
say 10−4. From the optimization viewpoint, (4) is similar to
the graphical lasso criterion (Friedman, Hastie, and Tibshirani
2008) that also has a log-determinant part and the element-
wise �1-penalty. Rothman (2012) derived an iterative procedure
to solve (4). Rothman’s (2012) proposal is based on heuristic
arguments and its convergence property is unknown. Another
theoretical limitation of Rothman’s (2012) proposal is that it
requires the smallest eigenvalue of the true covariance matrix
to be bounded away from zero, otherwise the influence of the
perturbing term due to the log-determinant barrier could not be
well controlled.

In this article, we present an efficient alternating direction
algorithm for solving (3) directly. Numerical examples show
that our algorithm is much faster than the log-barrier method.
We prove the convergence properties of our algorithm and dis-
cuss the statistical properties of the positive-definite constrained
�1-penalized covariance estimator. Besides the computational
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advantage, we also point out the methodological and theoretical
advantages of our method over the log-barrier method.

2. ALTERNATING DIRECTION ALGORITHM

We use an alternating direction method to solve (3) di-
rectly. The alternating direction method is closely related to the
operator-splitting method that has a long history back to 1950s
for solving numerical partial differential equations (see, e.g.,
Douglas and Rachford 1956; Peaceman and Rachford 1955).
Recently, the alternating direction method has been revisited
and successfully applied to solving large-scale problems arising
from different applications. For example, Scheinberg, Ma, and
Goldfarb (2010) introduced the alternating linearization meth-
ods to efficiently solve the graphical lasso optimization problem.
We refer to Fortin and Glowinski (1983) and Glowinski and Le
Tallec (1989) for more details on operator-splitting and alternat-
ing direction methods and a recent survey article by Boyd et al.
(2011) for a more complete list of references.

In the sequel, we propose an alternating direction method to
solve the �1-penalized covariance matrix estimation problem (3)
under the positive-definite constraint. We first introduce a new
variable � and an equality constraint as follows

(�̂
+
, �̂

+
)

= arg min
�,�

{
1

2
‖� − �̂n‖2

F + λ|�|1 : � = �,� � ε I
}

.

(5)

The solution to (5) gives the solution to (3). To deal with the
equality constraint in (5), we shall minimize its augmented La-
grangian function for some given penalty parameter μ, that is,

L(�,�; �) = 1

2
‖� − �̂n‖2

F + λ|�|1 − 〈�,� − �〉

+ 1

2μ
‖� − �‖2

F , (6)

where � is the Lagrange multiplier. We iteratively solve

(�i+1,�i+1) = arg min
��ε I,�

L(�,�; �i) (7)

and then update the Lagrange multiplier �i+1 by

�i+1 = �i − 1

μ
(�i+1 − �i+1).

For (7) we do it by alternatingly minimizing L(�,�; �i) with
respect to � and �.

To sum up, the entire algorithm proceeds as follows:
For i = 0, 1, 2, . . . , perform the following three steps sequen-
tially till convergence:

� step : �i+1 = arg min
��ε I

L(�,�i ; �i), (8)

� step : �i+1 = arg min
�

L(�i+1,�; �i), (9)

� step : �i+1 = �i − 1

μ
(�i+1 − �i+1). (10)

To further simplify the alternating direction algorithm, we de-
rive the closed-form solutions for (8) and (9). Consider the
� step. Define (Z)+ as the projection of a matrix Z onto

the convex cone {� � ε I}. Assume that Z has the eigen-
decomposition

∑p

j=1 λjv
T
jvj , and then (Z)+ can be obtained

as
∑p

j=1 max(λj , ε)vT
jvj . Then the � step can be analytically

solved as follows

�i+1 = arg min
��ε I

L(�,�i ; �i)

= arg min
��ε I

−〈�i ,�〉 + 1

2μ
‖� − �i‖2

F

= arg min
��ε I

‖� − (�i + μ�i)‖2
F

= (�i + μ�i)+.

Next, define an entry-wise soft-thresholding rule for all
the off-diagonal elements of a matrix Z as S(Z, τ ) =
{s(zj�, τ )}1≤j,�≤p with

s(zj�, τ ) = sign(zj�) max(|zj�| − τ, 0)I{j �=�} + zj�I{j=�}.

Then the � step has a closed-form solution given as follows

�i+1 = arg min
�

L(�i+1,�; �i)

= arg min
�

1

2
‖� − �̂n‖2

F + λ|�|1 + 〈�i ,�〉

+ 1

2μ
‖� − �i+1‖2

F

= arg min
�

1

2

∥∥∥∥∥� − μ(�̂n − �i) + �i+1

1 + μ

∥∥∥∥∥
2

F

+ λμ

1 + μ
|�|1

= 1

1 + μ
S(μ(�̂n − �i) + �i+1, λμ).

Algorithm 1 shows the complete details of our alternating direc-
tion method for (3). In Section 4, we provide the convergence
analysis of Algorithm 1 and prove that Algorithm 1 always
converges to the optimal solution of (5) from any starting point.

In our implementation, we use the soft-thresholding estimator
as the initial value for both �0 and �0, and we set �0 as a zero
matrix. Note that our convergence result in Theorem 1 shows
that Algorithm 1 globally converges for any μ > 0. Unlike λ, μ
does not change the final covariance estimator. In our numerical
experiments, we fixed μ = 2 just for simplicity. Before invoking
Algorithm 1, we always check whether the soft-thresholding
estimator is positive definite. If yes, then the soft-threhsolding
estimator is the final solution to (3).

Algorithm 1 Our alternating direction method for the �1-
penalized covariance estimator

1. Input: μ, �0, and �0.
2. Iterative alternating direction augmented Lagrangian step:

for the ith iteration

2.1 Solve �i+1 = (�i + μ�i)+;
2.2 Solve �i+1 = 1

1+μ
S(μ(�̂n − �i) + �i+1, λμ);

2.3 Update �i+1 = �i − 1
μ

(�i+1 − �i+1).

3. Repeat the above cycle till convergence.
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Table 1. Total time (in seconds) for computing a solution path with
99 thresholding parameters λ = {0.01, 0.02, . . . , 0.99}. Timing was

carried out on an AMD 2.8 GHz processor

Model 1 Model 2

p 100 200 500 100 200 500

Soft thresholding 0.2 1.3 5.7 0.1 1.3 5.6
Our method 9.2 65.2 1156.0 7.5 51.1 986.6
Rothman’s method 84.1 822.1 35911.8 51.3 611.1 32803.0

3. NUMERICAL EXAMPLES

Before delving into theoretical analysis of our proposed al-
gorithm and estimator, we first demonstrate the computational
advantage of our estimator over the log-barrier method and then
show an application of our estimator to the Markowitz portfolio
selection problem using stock data.

3.1 Comparing Two Positive-Definite Thresholding
Estimators

We first use simulation to show the competitive performance
of our proposal. In all examples, we standardize the variables to
have zero mean and unit variance. In each simulation model, we
generated 100 independent datasets, each with n = 50 indepen-
dent p-variate random vectors from the multivariate normal dis-
tribution with mean 0 and covariance matrix �0 = (σ 0

ij )1≤i,j≤p

for p = 100, 200, and 500. We considered two covariance mod-
els with different sparsity patterns:

Model 1: σ 0
ij = (1 − |i − j |/10)+.

Model 2: Partition the indices {1, 2, . . . , p} into K = p/20
nonoverlapping subsets of equal size, and let ik denote the
maximum index in Ik

σ 0
ij = 0.6I{i=j} + 0.4

K∑
k=1

I{i∈Ik,j∈Ik}

+ 0.4
K−1∑
k=1

(I{i=ik ,j∈Ik+1} + I{i∈Ik+1,j=ik}).

Model 1 has been used in Bickel and Levina (2008a) and Cai
and Liu (2011), and Model 2 is similar to the overlapping block
diagonal design that has been used in Rothman (2012).

First, we compare the run times of our estimator �̂
+

with
the log-barrier estimator �̆

+
by Rothman (2012). As shown in

Table 1, our method is much faster than the log-barrier method.
In what follows, we compare the performance of �̂

+
, �̆

+
,

and the soft-thresholding estimator �̂. For all three regular-
ized estimators, the thresholding parameter was chosen over 99
thresholding parameters λ = {0.01, 0.02, . . . , 0.99} by fivefold
cross-validation (Bickel and Levina 2008b; Rothman, Levina,
and Zhu 2009; Cai and Liu 2011). For �̆

+
, we set τ = 10−4

as in Rothman (2012). The estimation performance is measured
by the average losses under both the Frobenius norm and the
spectral norm. The selection performance is examined by the
false positive rate

#{(i, j ) : σ̂ij �= 0 & σij = 0}
#{(i, j ) : σij = 0}

and the true positive rate

#{(i, j ) : σ̂ij �= 0 & σij �= 0}
#{(i, j ) : σij �= 0} .

Moreover, we compare the average number of negative eigen-
values over 100 replications and the percentage of positive def-
initeness to check the positive definiteness.

Tables 2 and 3 show the average metrics over 100 replica-
tions. The soft-thresholding estimator �̂ is positive definite in
19 or fewer out of 100 simulation runs, while �̂

+
and �̆

+
can

always guarantee a positive-definite estimator. The larger the
dimension, the less likely for the soft-thresholding estimator to
be positive definite. In terms of estimation, both �̂

+
and �̆

+
are

more accurate than �̂. As for the selection performance, �̂
+

and
�̆

+
achieve a slightly better true positive rate than �̂. Overall,

�̂
+

is the best among all three regularized estimators.
To show the advantage of our method over Rothman’s pro-

posal, we further consider two gene expression datasets: one
from a small round blue-cell tumors microarray experiment

Table 2. Comparison of the three regularized estimators for Model 1

Frobenius norm Spectral norm False positive True positive Negative eigenvalues Positive definiteness

p = 100
Soft thresholding 8.41 (0.06) 4.02 (0.04) 24.5 (0.1) 87.6 (0.0) 2.24 (0.14) 53/100
Our method 8.40 (0.06) 4.02 (0.04) 24.8 (0.1) 87.8 (0.0) 0.00 (0.00) 100/100
Rothman’s method 8.40 (0.06) 4.02 (0.04) 24.5 (0.1) 87.7 (0.0) 0.00 (0.00) 100/100

p = 200
Soft thresholding 13.82 (0.06) 4.70 (0.03) 14.3 (0.4) 83.2 (0.3) 3.74 (0.22) 23/100
Our method 13.80 (0.06) 4.69 (0.03) 14.6 (0.4) 83.5 (0.3) 0.00 (0.00) 100/100
Rothman’s method 13.81 (0.05) 4.69 (0.03) 14.6 (0.4) 83.5 (0.3) 0.00 (0.00) 100/100

p = 500
Soft thresholding 25.15 (0.11) 5.28 (0.04) 6.3 (0.2) 78.1 (0.3) 4.64 (0.60) 7/100
Our method 25.10 (0.11) 5.28 (0.04) 6.5 (0.2) 78.3 (0.3) 0.00 (0.00) 100/100
Rothman’s Method NA NA NA NA NA NA

NA NA NA NA NA

NOTE: Each metric is averaged over 100 replications with the standard error shown in the bracket. NA means that the results for �̆
+

(Rothman’s method) are not available due to the
extremely long run times.
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Table 3. Comparison of the three regularized estimators for Model 2

Frobenius norm Spectral norm False positive True positive Negative eigenvalues Positive definiteness

p = 100
Soft thresholding 9.81 (0.07) 4.87 (0.05) 29.5 (0.0) 97.2 (0.0) 1.54 (0.14) 19/100
Our method 9.78 (0.07) 4.85 (0.05) 30.2 (0.0) 97.3 (0.0) 0.00 (0.00) 100/100
Rothman’s method 9.78 (0.07) 4.85 (0.05) 30.0 (0.0) 97.3 (0.0) 0.00 (0.00) 100/100

p = 200
Soft thresholding 15.95 (0.12) 5.90 (0.06) 17.1 (0.4) 94.1 (0.3) 3.93 (0.27) 7/100
Our method 15.81 (0.12) 5.84 (0.06) 18.8 (0.3) 95.0 (0.3) 0.00 (0.00) 100/100
Rothman’s method 15.83 (0.12) 5.85 (0.06) 18.3 (0.4) 94.6 (0.3) 0.00 (0.00) 100/100

p = 500
Soft thresholding 29.46 (0.18) 6.92 (0.07) 7.6 (0.1) 87.7 (0.5) 3.84 (0.78) 4/100
Our method 29.17 (0.20) 6.84 (0.06) 8.7 (0.2) 88.8 (0.6) 0.00 (0.00) 100/100
Rothman’s Method NA NA NA NA NA NA

NA NA NA NA NA

NOTE: Each metric is averaged over 100 replications with the standard error shown in the bracket. NA means that the results for �̆
+

(Rothman’s method) are not available due to the
extremely long run times.

(Khan et al. 2001) and the other one from a cardiovascular
microarray study (Efron 2009, 2010). The first dataset has 64
training tissue samples with four types of tumors (23 EWS, 8
BL-NHL, 12 NB, and 21 RMS) and 6567 gene expression val-
ues for each sample. We applied the prefiltering step used in
Khan et al. (2001) and then picked the top 40 and bottom 160
genes based on the F-statistic as done in Rothman, Levina, and
Zhu (2009). The second dataset has 63 subjects with 44 healthy
controls and 19 cardiovascular patients, and 20,426 genes mea-
sured for each subject. We used the F-statistic to pick the top
50 and bottom 150 genes. By doing so, it is expected that there
is weak dependence between the top and the bottom genes. We
considered the soft-thresholding estimator (Bickel and Levina
2008b), the log-barrier estimator (Rothman 2012), and our esti-
mator. For all three estimators, the thresholding parameter was
chosen by the fivefold cross-validation.

As evidenced in Figure 2, the soft-thresholding estimator
yields an indefinite matrix for both real examples, whereas the

other two regularized estimators guarantee the positive defi-
niteness. The soft-thresholding estimator contains 37 negative
eigenvalues in the small round blue-cell data and 46 negative
eigenvalues in the cardiovascular data. Regularized correlation
matrix estimation has a natural application in clustering when
the dissimilarity measure is constructed using the correlation
among features. For both datasets, we did hierarchical cluster-
ing using the three regularized estimators. The heat maps are
shown in Figure 3 in which the estimated sparsity pattern well
matches the expected sparsity pattern.

Finally, we compared the average run times over five cross-
validations for both �̂

+
and �̆

+
, as shown in Table 4. It is

obvious that our proposal is much more efficient.

3.2 Applications to Markowitz Portfolio Selection

To further support our proposal and illustrate the importance
of positive definiteness, we consider the celebrated Markowitz
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Figure 2. Plots of the bottom 50 eigenvalues of all regularized estimators for (A) the small round blue-cell data and (B) the cardiovascular
data: �̂ (dashed line), �̂

+
(solid line), and �̆

+
(dotted line).

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
0:

25
 2

1 
D

ec
em

be
r 

20
12

 



Xue, Ma, and Zou: Estimating Large Covariance Matrices 1485

Figure 3. Heat maps of the absolute values of three regularized sample correlation matrix estimator for (A) the small round blue-cell data and
(B) the cardiovascular data: �̂ (A1, B1), �̂

+
(A2, B2), and �̆

+
(A3, B3). The genes are ordered by hierarchical clustering using the estimated

correlations.

portfolio selection problem (Markowitz 1952) in finance, which
constructs the optimal mean-variance efficient portfolios by
solving the following quadratic optimization problem:

ŵ = arg min
w∈Rp

w′�w such that w′μ = μP ,w′e = 1, (11)

where e is the p-dimensional vector whose entries are all equal
to 1. The practical solution to the Markowitz problem is often
obtained by solving the empirical version of (11) where the true
covariance matrix � is replaced with the sample covariance ma-
trix. In the recent literature, many researchers have revisited the
classic Markowitz problem under the high-dimensional setting
(Jagannathan and Ma 2003; Brodie et al. 2009; DeMiguel et al.
2009; El Karoui 2010; Fan, Zhang, and Yu 2012). In particu-
lar, El Karoui (2010) provided a detailed theoretical analysis
to show the undesirable risk underestimation issue in the high-
dimensional Markowitz problem (11) when � is simply esti-
mated by the sample covariance matrix �̂n. El Karoui (2010)
further suggested using the thresholding covariance estimator
to deal with this challenge.

Note that if any empirical estimator of � is used in the
Markowitz problem, the estimator must be positive definite.
Otherwise, the corresponding optimization problem is ill de-
fined. To elaborate, we provide an empirical study to evaluate
the performance of the Markowitz problem when � is estimated
by the sample covariance estimator and the simple thresholding

Table 4. Total time (in seconds) for computing a solution path with
99 thesholding parameters. Timing was carried out on an AMD 2.8

GHz processor

Blue-cell data Cardiovascular data

Our method 74.7 66.3
Rothman’s method 1302.7 1575.3

covariance estimator and our proposal, respectively. We consid-
ered the monthly stock return data of companies in the S&P 100
index from January 1990 to December 2007. We disregarded
16 companies that were listed after 1990 and only used the
other p = 84 companies in the S&P 100 index. We followed
Jagannathan and Ma (2003) and Brodie et al. (2009) to focus on
the Markowitz problem with no-shortsale constraints, that is,

min
w∈Rp

w′�w such that w ≥ 0,w′e = 1. (12)

For ease of notation, we denote the Markowitz problem (12) with
� = �̂n as (P1) and the Markowitz problem (12) with � = �̂

+

as (P2). The thresholding parameter in � = �̂
+

is chosen by
the threefold cross-validation. In the sequel, we consider the
following strategy to construct two Markowitz portfolios using
n = 36 historically monthly returns for each month from 1993
to 2007. At the beginning of each month, we use the past 36
months’ stock return data to construct portfolios (P1) and (P2),
and only the current month returns are recorded for (P1) and
(P2). Then we repeat the above process for the next month.
There are 180 monthly predictions in total.

We compared the performance of (P1) and (P2) by computing
the average monthly return, the standard deviation of monthly
returns, and the Sharpe ratio for the time period of 1993–2007.
As shown in Table 5, (P2) significantly outperforms (P1) in
terms of both returns and volatility. We also applied the log-
barrier estimator to the Markowitz problem (12) with � = �̆n,
and we found that the outcomes are similar to that of (P2), but the
log-barrier method required about 15–20 times more computing
time than (P2). Moreover, we want to point out that the results of
the simple soft-thresholding estimator are not reported because
for the majority of the time period (137 out of 180 months), the
soft-thresholding estimator is not positive definite thus cannot
be used in the Markowitz problem (12) to produce a portfolio.

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
0:

25
 2

1 
D

ec
em

be
r 

20
12

 



1486 Journal of the American Statistical Association, December 2012

Table 5. Comparison of two Markowitz portfolio selection methods
(P1) and (P2) for three different time periods in the monthly stock

return data

Std. Dev. Sharpe ratioMean

Time period Jan. 1993–Dec. 2007

P1 1.02 3.66 27.73
P2 1.13 3.42 33.06

NOTE: Monthly mean returns, standard deviations of monthly returns, and corresponding
Sharpe ratios are all expressed in %.

4. THEORETICAL PROPERTIES

4.1 Convergence Analysis of the Algorithm

In this section, we prove that the sequence (�i ,�i ,�i) pro-
duced by the alternating direction method (Algorithm 1) con-
verges to (�̂

+
, �̂

+
, �̂

+
), where (�̂

+
, �̂

+
) is an optimal solution

of (5) and �̂
+

is the optimal dual variable. This automatically
implies that Algorithm 1 gives an optimal solution of (3).

We define some necessary notation for ease of presentation.
Let G be a 2p × 2p matrix defined as

G =

⎛
⎜⎝

μIp×p 0

0
1

μ
Ip×p

⎞
⎟⎠.

Define the norm ‖ · ‖2
G as ‖U‖2

G = 〈U,GU 〉 and the correspond-
ing inner product 〈·, ·〉G as 〈U,V 〉G = 〈U,GV 〉. Before we give
the main theorem about the global convergence of Algorithm 1,
we need the following lemma.

Lemma 1. Assume that (�̂
+
, �̂

+
) is an optimal solution of

(5) and �̂
+

is the corresponding optimal dual variable associ-
ated with the equality constraint � = �. Then the sequence
{(�i ,�i ,�i)} produced by Algorithm 1 satisfies

‖Ui − U ∗‖2
G − ‖Ui+1 − U ∗‖2

G ≥ ‖Ui − Ui+1‖2
G, (13)

where U ∗ = (�̂
+
, �̂

+
)T and Ui = (�i ,�i)T.

Now we are ready to give the main convergence result of
Algorithm 1.

Theorem 1. The sequence {(�i ,�i ,�i)} produced by Algo-
rithm 1 from any starting point converges to an optimal solution
of (5).

4.2 Statistical Analysis of the Estimator

Define �0 as the true covariance matrix for the obser-
vations X = (Xij )n×p, and define the active set of �0 =
(σ 0

jk)1≤j,k≤p as A0 = {(j, k) : σ 0
jk �= 0, j �= k} with the car-

dinality s = |A0|. Denote by BA0 the Hadamard prod-
uct Bp×p ◦ (I{(j,k)∈A0})1≤j,k≤p = (bjk · I{(j,k)∈A0})1≤j,k≤p. De-
fine σmax = maxj σ o

jj as the maximal true variance in �0.

Theorem 2. Assume that the true covariance matrix �0 is
positive definite.

(a) Under the exponential-tail condition that for all |t | ≤ η

and 1 ≤ i ≤ n, 1 ≤ j ≤ p

E
{
exp

(
tX2

ij

)} ≤ K1,

we also assume that log p ≤ n. For any M > 0, we pick
the thresholding parameter as

λ = c2
0

log p

n
+ c1

(
log p

n

)1/2

.

where

c0 = 1

2
eK1η

1/2 + η−1/2(M + 1)

and

c1 = 2K1

(
η−1 + 1

4
ησ 2

max

)
exp

(
1

2
ησmax

)
+ 2η−1(M + 2).

With probability at least 1 − 3p−M , we have

‖�̂+ − �0‖F ≤ 5λ(s + p)1/2.

(b) Under the polynomial-tail condition that for all γ > 0,
ε > 0, and 1 ≤ i ≤ n, 1 ≤ j ≤ p

E{|Xij |4(1+γ+ε)} ≤ K2,

we also assume that p ≤ cnγ for some c > 0. For any
M > 0, we pick the thresholding parameter as

λ = 8(K2 + 1)(M + 1)
log p

n

+ 8(K2 + 1)(M + 2)

(
log p

n

)1/2

.

With probability at least 1 − O(p−M ) − 3K2p

(log n)2(1+γ+ε)n−γ−ε, we have

‖�̂+ − �0‖F ≤ 5λ(s + p)1/2.

Define d = maxj

∑
k I{σjk �=0} and assume that σmax is bounded

by a fixed constant, then we can pick λ = O((log p/n)1/2) to
achieve the minimax optimal rate of convergence under the
Frobenius norm as in Theorem 4 of Cai and Zhou (2012b) that

1

p
‖�̂+ − �0‖2

F = Op

((
1 + s

p

)
log p

n

)
= Op

(
d

log p

n

)
.

However, to attain the same rate in the presence of the log-
determinant barrier term, Rothman (2012) instead would require
that σmin, the minimal eigenvalue of the true covariance matrix,
should be bounded away from zero by some positive constant
and also that the barrier parameter should be bounded by some
positive quantity. We would like to point out that if σmin is
bounded away from zero, then the soft-thresholding estimator
�̂st will be positive definite with an overwhelming probability
tending to 1 (Bickel and Levina 2008b; Cai and Zhou 2012a,
b). Therefore, the theory requiring a lower bound on σmin is not
very appealing.

5. DISCUSSION

The soft-thresholding estimator has been shown to enjoy good
asymptotic properties for estimating large sparse covariance
matrices. But its positive definiteness property can be easily
violated in practice, which prevents its use in many impor-
tant applications such as quadratic discriminant analysis and
Markowitz portfolio selection. In this article, we have put the
soft-thresholding estimator in a convex optimization framework
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and considered a natural modification by imposing the positive
definiteness constraint. We have developed a fast alternating di-
rection method to solve the constrained optimization problem,
and the resulting estimator retains the sparsity and positive def-
initeness properties simultaneously. The algorithm and the new
estimator are supported by numerical and theoretical results.

The log-determinant barrier method is also a valid technique
to achieve positive definiteness in sparse covariance matrix es-
timation. However, it is still unclear whether the iterative pro-
cedure proposed by Rothman (2012) actually finds the right
solution to the log-determinant barrier perturbed criterion in
(4), although the code seems to produce a reasonably good
estimator. We have clearly demonstrated the computational ad-
vantage of our method. We have shown that unlike in Rothman
(2012), our theory does not require a lower bound on the small-
est eigenvalue of the true covariance matrix. Thus our theory is
practically more relevant.

We would also like to argue that the main idea behind our
method is much more flexible than the log-determinant barrier
method in the sense that the former can be easily extended
to compute the positive-definite �1-penalized covariance
estimator under some additional constraints. For illustration,
let us consider the scenario when we know some extra prior
information that eigenvalues of the true covariance matrix are
bounded by two positive constants α and β (d’Aspremont,
Banerjee, and Ghaoui 2008; Lu 2010). Then we solve the
following constrained optimization problem

�̂
+
α,β = arg min

β I���α I

1

2
‖� − �̂n‖2

F + λ|�|1. (14)

Define (Z)α,β as the projection of a matrix Z onto
the convex cone {β I � � � α I}, that is, (Z)α,β =∑p

j=1 min(max(λj , α), β)vT
jvj when Z has the eigen-

decomposition
∑p

j=1 λjv
T
jvj . Hence, an efficient alternating

direction algorithm can be obtained from Algorithm 1 by
simply modifying its � step as

�i+1 = arg min
β I���α I

L(�,�i ; �i) = (�i + μ�i)α,β .

However, if we apply the log-determinant barrier method
to solve the new problem, the corresponding optimization
criterion becomes

�̂
+
α,β = arg min

β I���α I

1

2
‖� − �̂n‖2

F + λ|�|1
− τ1 log det(� − α I) − τ2 log det(β I − �). (15)

It is not clear how to extend the heuristic iterative procedure
in Rothman (2012) to handle the above optimization problem
which is considerably more complex than (4).

APPENDIX: TECHNICAL PROOFS

Proof of Lemma 1. Since (�̂
+
, �̂

+
, �̂

+
) is optimal to (5), it follows

from the Karush–Kuhn–Tucker (KKT) conditions that the followings
hold

1

λ
(−�̂

+ − �̂
+ + �̂n)j� ∈ ∂|�̂+

j�|,
∀j = 1, . . . , p, � = 1, . . . , p and j �= �, (A.1)

(�̂
+ − �̂n)jj + �̂

+
jj = 0, ∀j = 1, . . . , p, (A.2)

�̂
+ = �̂

+
, (A.3)

�̂
+ � ε I, (A.4)

and

〈�̂+
, � − �̂

+〉 ≤ 0, ∀� � ε I . (A.5)

Note that the optimality conditions for the first subproblem in Algo-
rithm 1, that is, the subproblem with respect to � in (8), are given by

〈
�i − 1

μ
(�i+1 − �i), � − �i+1

〉
≤ 0, ∀� � ε I . (A.6)

Using the updating formula for �i in Algorithm 1, that is,

�i+1 = �i − 1

μ
(�i+1 − �i+1), (A.7)

(A.6) can be rewritten as〈
�i+1 − 1

μ
(�i+1 − �i), � − �i+1

〉
≤ 0, ∀� � ε I . (A.8)

Now by letting � = �i+1 in (A.5) and � = �̂
+

in (A.8), we can get
that

〈�̂+
, �i+1 − �̂

+〉 ≤ 0, (A.9)

and 〈
�i+1 − 1

μ
(�i+1 − �i), �̂

+ − �i+1

〉
≤ 0. (A.10)

Summing (A.9) and (A.10) yields〈
�i+1 − �̂

+
, (�i+1 − �̂

+
) + 1

μ
(�i − �i+1)

〉
≥ 0. (A.11)

The optimality conditions for the second subproblem in Algorithm
1, that is, the subproblem with respect to � in (8) are given by

0 ∈ (�i+1 − �̂n)j� + λ∂
∣∣�i+1

j�

∣∣ + �i
j� + 1

μ
(�i+1 − �i+1)j�,

∀j = 1, . . . , p, � = 1, . . . , p, and j �= �, (A.12)

and

(�i+1 − �̂n)jj + �i
jj + 1

μ
(�i+1 − �i+1)jj = 0, ∀j = 1, . . . , p.

(A.13)

Note that by using (A.7), (A.12) and (A.13) can be, respectively, rewrit-
ten as

1

λ
(−�i+1 − �i+1 + �̂n)j� ∈ ∂

∣∣�i+1
j�

∣∣ ,
∀j = 1, . . . , p, � = 1, . . . , p, and j �= �, (A.14)

and

(�i+1 − �̂n)jj + �i+1
jj = 0, ∀j = 1, . . . , p. (A.15)

Using the fact that ∂| · | is a monotone function, (A.1), (A.2), (A.14),
and (A.15) imply

〈�i+1 − �̂
+
, (�̂

+ − �i+1) + (�̂
+ − �i+1)〉 ≥ 0. (A.16)

The summation of (A.11) and (A.16) gives

‖�i+1 − �̂
+‖2

F ≤ 〈�i+1 − �̂
+
, �̂

+ − �i+1〉
+ 〈�̂+ − �i+1, �̂

+ − �i+1〉
+ 1

μ
〈�̂+ − �i+1, �i+1 − �i〉. (A.17)
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Combining (A.17) with �i+1 = μ(�i − �i+1) + �i+1 and �̂
+ = �̂

+

leads to

‖�i+1 − �̂
+‖2

F ≤ 〈�i+1 − �̂
+
, �̂

+ − �i+1〉
+ 〈�̂+ − �i+1 − μ(�i − �i+1), �̂

+ − �i+1〉
+ 1

μ
〈�̂+ − �i+1 − μ(�i − �i+1),�i+1 − �i〉.

(A.18)

Simple algebraic derivation from (A.18) yields the following
inequality:

‖�i+1 − �̂
+‖2

F − 〈�i − �i+1,�i − �i+1〉
≤ μ〈�i+1 − �̂

+
, �i − �i+1〉 + 〈�i+1 − �̂

+
, �i − �i+1〉μ. (A.19)

Rearranging the right-hand side of (A.19) using �̂
+ − �i+1 = (�̂

+ −
�i) + (�i − �i+1) and �̂

+ − �i+1 = (�̂
+ − �i) + (�i − �i+1), then

(A.17) can be reduced to

μ〈�i − �̂
+
, �i − �i+1〉 + 1

μ
〈�i − �̂

+
,�i − �i+1〉

≥ μ‖�i − �i+1‖2
F + 1

μ
‖�i − �i+1‖2

F + ‖�i+1 − �̂
+‖2

F

− 〈�i − �i+1, �i − �i+1〉. (A.20)

Using the notation of Ui and U ∗, (A.20) can be rewritten as

〈Ui − U ∗, U i − Ui+1〉G ≥ ‖Ui − Ui+1‖2
G + ‖�i+1 − �̂

+‖2
F

− 〈�i − �i+1, �i − �i+1〉. (A.21)

Combining (A.21) with the following identity

‖Ui+1 − U ∗‖2
G = ‖Ui+1 − Ui‖2

G − 2〈Uk − Ui+1, U i − U ∗〉G

+ ‖Ui − U ∗‖2
G,

we get

‖Ui − U ∗‖2
G − ‖Ui+1 − U ∗‖2

G

= 2〈Ui − Ui+1, U i − U ∗〉 − ‖Ui+1 − Ui‖2
G

≥ 2‖Ui −Ui+1‖2
G+2‖�i+1 − �̂

+‖2 − 2〈�i − �i+1, �i − �i+1〉
−‖Ui+1 − Ui‖2

G

= ‖Ui − Ui+1‖2
G + 2‖�i+1 − �̂

+‖2 − 2〈�i − �i+1, �i − �i+1〉.
(A.22)

Now, using (A.14) and (A.15) for i instead of i + 1, we get,

1

λ
(−�i − �i + �̂n)j� ∈ ∂|�i

j�|,
∀j = 1, . . . , p, � = 1, . . . , p, and j �= �, (A.23)

and

(�i − �̂n)jj + �i
jj = 0, ∀j = 1, . . . , p. (A.24)

Combining (A.14), (A.15), (A.23), and (A.24) and using the fact that
∂| · | is a monotone function, we obtain

〈�i − �i+1, �i+1 − �i + �i+1 − �i〉 ≥ 0,

which immediately implies,

〈�i − �i+1, �i+1 − �i〉 ≥ ‖�i+1 − �i‖2
F ≥ 0. (A.25)

By substituting (A.25) into (A.22), we get the desired result (13). �
Proof of Theorem 1. From Lemma 1, we can easily get that

(a) ‖Ui − Ui+1‖G → 0;
(b) {Ui} lies in a compact region;
(c) ‖Ui − U ∗‖2

G is monotonically non-increasing and thus con-
verges.

It follows from (a) that �i − �i+1 → 0 and �i − �i+1 → 0. Then
(A.7) implies that �i − �i+1 → 0 and �i − �i → 0. From (b),
we obtain that Ui has a subsequence {Uij } that converges to Ū =
(�̄, �̄), that is, �ij → �̄ and �ij → �̄. From �i − �i → 0, we
also get that �ij → �̄ := �̄. Therefore, (�̄, �̄, �̄) is a limit point
of {(�i , �i , �i)}.

Note that (A.14) and (A.13), respectively, imply that

1

λ
(−�̄ − �̄ + �̂n)j� ∈ ∂|�̄j�|,

∀j = 1, . . . , p, � = 1, . . . , p, and j �= �, (A.26)

and

(�̄ − �̂n)jj + �̄jj = 0, ∀j = 1, . . . , p, (A.27)

and (A.8) implies that

〈�̄, � − �̄〉 ≤ 0, ∀� � ε I . (A.28)

(A.26), (A.27), and (A.28) together with �̄ = �̄ mean that (�̄, �̄, �̄)
is an optimal solution to (5). Therefore, we showed that any limit point
of {(�i , �i , �i)} is an optimal solution to (5). �

Proof of Theorem 2. Without loss of generality, we may always
assume that E(Xij ) = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ p. By the condition
that �0 is positive definite, we can always choose some very small
ε > 0 such that ε is smaller than the minimal eigenvalue of �0. We
introduce � = � − �0, and then we can write (3) in terms of � as
follows,

�̂ = arg min
�:�=�T,�+�0�ε I

1

2
‖�+�0 − �̂n‖2

F + λ|� + �0|1 (≡ F (�)).

Note that it is easy to see that �̂ = �̂
+ − �0.

Now we consider � ∈ {� : � = �T, � + �0 � ε I, ‖�‖F =
5λs1/2}. Under the probability event {|σ̂ n

ij − σ 0
ij | ≤ λ, ∀(i, j )}, we

have

F (�) − F (0) = 1

2
‖� + �0 − �̂n‖2

F − 1

2
‖�0 − �̂n‖2

F + λ|�
+ �0|1 − λ|�0|1

= 1

2
‖�‖2

F + < �, �0 − �̂n > +λ|�Ac
0
|1

+ λ
( ∣∣�A0 + �0

A0

∣∣
1
− ∣∣�0

A0

∣∣
1

)

≥ 1

2
‖�‖2

F − λ

(
|�|1 +

∑
i

|�ii |
)

+ λ|�Ac
0
|1 − λ|�A0 |1

≥ 1

2
‖�‖2

F − 2λ

(
|�A0 |1 +

∑
i

|�ii |
)

≥ 1

2
‖�‖2

F − 2λ(s + p)1/2‖�‖F

≥ 5

2
λ2(s + p)

> 0.

Note that �̂ is also the optimal solution to the following convex opti-
mization problem

�̂ = arg min
�:�=�T,�+�0�ε I

F (�) − F (0) (≡ G(�)).

Under the same probability event, ‖�̂‖F ≤ 5λ(s + p)1/2 would
always hold. Otherwise, the fact that G(�) > 0 for ‖�‖F =
5λ(s + p)1/2 should contradict with the convexity of G(·) and
G(�̂) ≤ G(0) = 0. Therefore, we can obtain the following probability
bound

Pr(‖�̂+ − �0‖F ≤ 5λ(s + p)1/2) ≥ 1 − Pr

(
max

i,j

∣∣σ̂ n
ij − σ 0

ij

∣∣ > λ

)
.
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Now we shall prove the probability bound under the exponential-
tail condition. First it is easy to verify two simple inequalities that
1 + u ≤ exp(u) ≤ 1 + u + 1

2 u2 exp(|u|) and v2 exp(|v|) ≤ exp(v2 +
1). The first inequality can be proved by using the Taylor expansion,
and the second one can be easily derived using the obvious facts that
exp(v2 + 1) ≥ exp(2|v|) and exp(|v|) ≥ v2.

Let t0 = (η log p

n
)1/2, c0 = 1

2 eK1η
1/2 + η−1/2(M + 1), and ε0 =

c0( log p

n
)1/2. For any M > 0, we can apply the Markov inequality to

obtain that

Pr

(∑
i

Xij > nε0

)
≤ exp(−t0nε0) ·

n∏
i=1

E[exp(t0Xij )]

≤ exp(−t0nε0) ·
n∏

i=1

{
1 + t2

0

2
E
[
X2

ij exp(t0|Xij |)
]}

≤ p−c0η1/2 · exp

(
t2
0

2

n∑
i=1

E
[
X2

ij exp(t0|Xij |)
])

≤ p−c0η1/2 · exp

(
t2
0

2

n∑
i=1

E
[
exp

(
t2
0 X2

ij + 1
)])

≤ p−c0η1/2 · exp

(
1

2
eK1η log p

)
(= p−M−1),

where we apply exp(u) ≤ 1 + u + 1
2 u2 exp(|u|) in the second in-

equality and 1 + u ≤ exp(u) in the third inequality and then use
v2 exp(|v|) ≤ exp(v2 + 1) in the fourth inequality. Moreover, the sim-
ple facts that E[Xij ] = 0 (1 ≤ i ≤ n) and t2

0 = η
log p

n
≤ η are also used.

Let t1 = 1
2 η( log p

n
)1/2 and c1 = 2K1(η−1 + 1

4 ησ 2
max) exp( 1

2 ησmax) +
2η−1(M + 2). Define ε1 = c1( log p

n
)1/2. For any M > 0, we first apply

the Cauchy inequality to obtain that

E

[
X2

ijX
2
ik · exp

(
1

2
η|XijXik|

)]

≤ E

[
X2

ijX
2
ik · exp

(
1

4
η
(
X2

ij + X2
ik

))]
≤ (

E
[
X4

ij exp
(
ηX2

ij /2
)])1/2 · (E [

X4
ik exp

(
ηX2

ik/2
)])1/2

≤ 4η−2 · (E [
exp

(
ηX2

ij

)])1/2 · (E [
exp

(
ηX2

ik

)])1/2

≤ 4K1η
−2,

where we use the simple inequality exp(|v|) ≥ v2 in the third inequality.
Then, combining this result with the Cauchy inequality again yields
that

E
[(

XijXik − σ 0
jk

)2 · exp
(
t1
∣∣XijXik − σ 0

jk

∣∣)]
≤ 2E

[
X2

ijX
2
ik · exp

(
1

2
η
∣∣XijXik − σ 0

jk

∣∣)] + 2
(
σ 0

jk

)2

· E
[

exp

(
1

2
η
∣∣XijXik − σ 0

jk

∣∣)]

≤ 8K1η
−2 · exp

(
1

2
ησ 0

jk

)
+ 2

(
σ 0

jk

)2 · exp

(
1

2
ησ 0

jk

)

· E
[

exp

(
1

4
η
(
X2

ij + X2
ik

))]

≤ 8K1η
−2 · exp

(
1

2
ησmax

)
+ 2σ 2

max · exp

(
1

2
ησmax

)

×
(

E

[
exp

(
1

2
ηX2

ij

)])1/2

·
(

E

[
exp

(
1

2
ηX2

ik

)])1/2

≤ 2K1(4η−2 + σ 2
max) · exp

(
1

2
ησmax

)
,

where we use the fact that t1 = 1
2 η( log p

n
)1/2 ≤ 1

2 η < η in the first in-
equality and then use |σ 0

jk| ≤ (σ 0
jj σ

0
kk)1/2 ≤ σmax in the third inequality.

Now, we can apply the Markov inequality to obtain the following prob-
ability bound:

Pr

(∑
i

{
XijXik − σ 0

jk

}
> nε1

)

≤ exp(−t1nε1) ·
n∏

i=1

E
[
exp

(
t1
(
XijXik − σ 0

jk

))]

≤ p− 1
2 c1η ·

n∏
i=1

{
1 + 1

2
t2
1 · E

[ (
XijXik − σ 0

jk

)2

· exp
(
t1
∣∣XijXik − σ 0

jk

∣∣) ]}

≤ p− 1
2 c1η · exp

(
1

2
t2
1 ·

n∑
i=1

E
[ (

XijXik − σ 0
jk

)2

· exp
(
t1
∣∣XijXik − σ 0

jk

∣∣) ])

≤ p− 1
2 c1η · exp

(
K1

(
1 + 1

4
η2σ 2

max

)
· exp

(
1

2
ησmax

)
· log p

)
(= p−M−2),

where we apply exp(u) ≤ 1 + u + 1
2 u2 exp(|u|) and E[XijXik] = σ 0

jk

for i = 1, 2, . . . , n in the second inequality, and we use 1 + u ≤ exp(u)
in the third inequality.

Recall that λ = c0
log p

n
+ c1( log p

n
)1/2 = ε2

0 + ε1 and

σ̂ n
jk − σ 0

jk =
(

1

n

∑
i

XijXik − σ 0
jk

)
−

(
1

n

∑
i

Xjk

)
·
(

1

n

∑
i

Xik

)
.

Therefore, we can complete the probability bound under the
exponential-tail condition as follows

Pr

(
max
j,k

∣∣σ̂ n
jk − σ 0

jk

∣∣ > λ

)
≤ p2 Pr

(∑
i

XijXik > n
(
σ 0

jk + ε1

))

+ 2p Pr

(∑
i

Xij > nε0

)

≤ 3p−M.

In the sequel, we shall prove the probability bound under the
polymonial-tail condition. First, we define c2 = 8(K2 + 1)(M + 1)
and ε2 = c2( log p

n
)1/2. Define δn = n1/4(log n)−1/2, Yij = Xij I{|Xij |≤δn},

and Zij = Xij I{|Xij |>δn}. Then we have Xij = Yij + Zij and E[Xij ] =
E[Yij ] + E[Zij ]. By construction, |Yij | ≤ δn are bounded random
variables, and E[Zij ] are bounded by o(ε2) due to the fact that
|E[Zij ]| ≤ δ−3

n E[|Xij |4I{|Xij |>δn}] ≤ K2δ
−3
n = o(ε2). Now we can ap-

ply the Bernstein’s inequality (Bernstein 1946; Bennett 1962) to obtain
that

Pr

(∑
i

{Yij − E[Yij ])} >
1

2
nε2

)
≤ exp

(
−nε2

2

8var(Yij ) + 4
3 δnε2

)

≤ exp

( −c2 log p

8K2 + 8 + O(n−1/4)

)
= O(p−M−1),

where the fact that var(Yij ) ≤ E[X2
ij ] ≤ E[X2

ij I{|Xij |≥1}] +
E[X2

ij I{|Xij |≤1}] ≤ K2 + 1 is used in the second inequality. Be-
sides, we can apply the Markov inequality to obtain that

Pr (|Xij | > δn) ≤ δ−4(1+γ+ε)
n E

[|Xij |4(1+γ+ε)
]

≤ K2(log n)2(1+γ+ε)n−1−γ−ε.
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Then, we can derive the following probability bound

Pr

(∑
i

Xij > nε2

)
= Pr

(∑
i

{Yij + Zij − E[Yij + Zij ]} > nε2

)

≤ Pr

(∑
i

{Yij − E[Yij ]} >
1

2
nε2

)

+ Pr

(∑
i

{Zij − E[Zij ]} >
1

2
nε2

)

≤ O(p−M−1) + Pr

(∑
i

{Zij − o(ε2)} >
1

2
nε2

)

≤ O(p−M−1) +
∑

i

Pr(|Xij | > δn)

≤ O(p−M−1) + K2(log n)2(1+γ+ε)n−γ−ε. �

Let c3 = 8(K2 + 1)(M + 2) and ε3 = c3( log p

n
)1/2. Recall that δn =

( n

log(n) )1/4, and define Rijk = XijXikI{|Xij |>δn or |Xik |>δn}. Then we have

XijXik = YijYik + Rijk and σ 0
jk = E[XijXik] = E[YijYik] + E[Rijk].

By construction, |YijYik| ≤ δ2
n are bounded random variables and

E[Rijk] is bounded by o(ε3) due to the fact that

|E[Rijk]| ≤ |E[XijXikI{|Xij |>δn}]| + |E[XijXikI{|Xik |>δn}]|
≤ δ−2−4γ

n E
[
X

4(1+γ )
ij I{|Xij |>δn}

]
· E

[
X2

ik

]
+ δ−2−4γ

n E
[
X

4(1+γ )
ik I{|Xik |>δn}

]
· E

[
X2

ij

]
≤ 2K2δ

−2−4γ
n (= o(ε3)).

Again, we can apply the Bernstein’s inequality to obtain that

Pr

(∑
i

{YijYik − E[YijYik]} >
1

2
nε3

)

≤ exp

(
−nε2

3

8K2 + 8 + 4
3 δ2

nε3

)

≤ exp

( −c3 log p

8K2 + 8 + O((log n)−1/2)

)
= O(p−M−2),

where the fact that var(YijYik) ≤ E[X2
ijX

2
ik] ≤ (E[X4

ij ]E[X4
ik])1/2 ≤

K2 + 1 is used.

Pr

(
max
j,k

∣∣∣∣∣
∑

i

(
XijXik − σ 0

jk

)∣∣∣∣∣ > nε3

)

≤ Pr

(
max
j,k

∣∣∣∣∣
∑

i

{YijYik − E[YijYik]}
∣∣∣∣∣ >

1

2
nε3

)

+ Pr

(
max
j,k

∣∣∣∣∣
∑

i

{Rijk − E[Rijk]}
∣∣∣∣∣ >

1

2
nε3

)

≤ 2
∑
j,k

Pr

(∑
i

{YijYik − E[YijYik]} >
1

2
nε3

)

+ Pr

(
max
j,k

∣∣∣∣∣
∑

i

{Rijk − o(ε3)}
∣∣∣∣∣ >

1

2
nε3

)

≤ O(p−M ) +
∑
i,j

Pr(|Xij | > δn)

≤ O(p−M ) + K2p(log n)2(1+γ+ε)n−γ−ε

Recall that λ = c2
log p

n
+ c3( log p

n
)1/2 = ε2

2 + ε3. Therefore, we can
prove the desired probability bound under the polynomial-tail con-
dition as follows

Pr

(
max
j,k

∣∣σ̂ n
jk − σ 0

jk

∣∣ > λ

)

≤ Pr

(
max
j,k

∣∣∣∣∣
∑

i

{
XijXik − σ 0

jk

}∣∣∣∣∣ > nε3

)

+ Pr

(
max

j

∣∣∣∣∣
∑

i

Xij

∣∣∣∣∣ > nε2

)

≤ O(p−M ) + 3K2p(log n)2(1+γ+ε)n−γ−ε.

[Received November 2011. Revised June 2012.]
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