How To Be Smooth: Automated Smoothing in Political Science

Luke Keele
2140 Derby Hall
150 North Oval Mall
Ohio State University
Columbus, OH 43210

March 9, 2006

Abstract

Smoothing is an important statistical tool in applied analysis of political data. Smoothers can be used to incorporate nonlinearity, deal with duration dependence, and diagnose residual plots. But smoothers invariably require the analyst to make choices about the amount of smoothing to apply and the criteria for this choice amounts to visual examination. Such visual methods can lead to seemingly arbitrary selection of smoothing parameters. I argue that instead of using a visual method for the selection of smoothing parameters, analysts should use automated methods where the level of smoothing is estimated from the data. I outline why such methods are preferable and then demonstrate with both simulated data and in empirical settings how automatic smoothing is superior to visual selection of smoothing parameters.

Methods of smoothing the statistical relationship between two variables have gained increased currency in political science. Smoothers, often referred to as scatterplot smoothers or nonparametric regression, have a variety of uses. They can be used to incorporate nonlinearity into parametric models (Beck and Jackman 1998; Keele 2006). They can be used to smooth plots of hazard functions (Box-Steffensmeier and Jones 2004). They are also a key technique for the estimation of binary time-series cross sectional datasets (Beck, Katz and Tucker 1998). They can also be an important diagnostic tool for linear model residual plots (Fox 1997).

While smoothers are readily available in a variety of statistical software packages, their use isn’t without complications. First, there are a bewildering array of different smoothers. For example, there are at least four different types of spline smoothers alone. Moreover, while smoothers replace strong linearity assumptions, analysts who use smoothers have to
make choices about bandwidth and smoothing parameters, knot numbers and placement, and basis functions depending on the type of smoother. These choices all have consequences for how smooth the fit between x and y is. Evaluation of these choices is typically done with a visual method of trial and error with only theory as a guide for how smooth a process may be. Some authors have even described the choices revolving around the smoothers as "controversial" (Box-Steffensmeier and Jones 2004). This has led some analysts to see the use of smoothers as more akin to art than science.

I argue that most often theories in social science are silent about the smoothness of the process making it a poor guide for the selection of modeling parameters. Moreover, in many situations where smoothers are applied we cannot reasonably expect analysts to have theories. For example, the smoothing of time terms or using smoothers for diagnostic plots are situations where there will never be any theory to guide the analyst. Instead, I advocate the use of smoothing techniques where the amount of smoothness imposed is estimated from the data. Such methods often provide a better fit to the data and more importantly produce confidence bands that better reflect our uncertainty about the level of smoothness.

What follows, here, is first an overview of the basic types of smoothers available. More importantly I clarify the choices required in the use of each. I, then, introduce automatic smoothing techniques focusing on smoothing splines where the knot placement and selection is automatic and the smoothing parameter is estimated via either cross validation or restricted maximum likelihood estimation. I, then, conduct a comparative analysis of smoothers to demonstrate how smoothing splines with automatic smoothing outperforms other techniques. I finish with some empirical examples to show how smoothing splines might be used in practice.

1 So Many Smoothers, So Many Choices

Smoothers fall into three basic classes: kernel smoothers, local polynomial regression, and splines. I restrict my attention, here to local polynomial regression and, in particular, splines. Kernel smoothers get very little use in political science and in other fields since splines and local polynomial regression incorporate many of the desirable properties of kernel smoothers.
but offer other advantages.

In local polynomial regression, the smoother works by performing a weighted polynomial regression for some small segment of the data. For an excellent introduction to local polynomial regression see Fox (2000). Among local polynomial smoothers one can use loess, lowess, and local likelihood.

Splines are piecewise polynomial functions that are constrained to join at points called knots. In their simplest form, splines are just regression models with restricted dummy regressors. They force the regression line to change direction at some point along the range of x. Separate regression lines are fit within the regions between the knots. The term “spline” come from a tool used by draftsman to draw curves. There are a variety of splines including regression splines, cubic splines (often referred to as cubic B-splines), natural splines, and smoothing splines. To make matters worse smoothing splines are often referred to as p-splines, penalized splines, or pseudosplines all of which are, for the most part, interchangeable terms for a smoothing spline.

When using local polynomial smoothers, an analyst must make three choices: the degree of the polynomial, the bandwidth or span, and the kernel. However, two of these choices are almost always of little import. The degree of the polynomial is almost always quadratic and occasionally cubic. Higher degree polynomials have more coefficients resulting in higher variability which is undesirable (Fox 2000). In fact most software won’t allow the analyst to choose anything more than a second degree polynomial.\(^1\) While analysts can also choose among a variety of kernels, which are used to provide weights for the local regression model almost all local regression smoothers use a tri-cube kernel. In practice, different kernels typically make little difference.

The important choice when using a local polynomial smoother is that of bandwidth or span. The bandwidth controls how much data is used for each local regression, which directly translate into how smooth the fit is between x and y. As the bandwidth increases, the smoother the nonparametric fit between x and y is, and for very small bandwidths the smoother will interpolate between data points giving a very rough fit between x and y. It is often convenient to specify the degree of smoothing as the proportion of the observations

\(^1\)For example, the lowess command in both Stata and R will not let the user adjust the degree of polynomial used.
that will be included in the window. This fraction of the data is called the span, \(s \), of a local-regression smoother and it is an exact function of the bandwidth. The choice of bandwidth or span reflects a choice between bias and variance. Smoother fits tend to have higher amounts of bias but little variance, while rougher fits will exhibit little bias but large amounts of variability. See Beck and Jackman (1998) or Fox (2000) demonstrations of this tradeoff. It would seem that the amount of smoothing to apply then would be the solution to a mean squared error problem. We will exploit this equivalence later.

The typical method for selection of the span or bandwidth parameter is one of visual trial and error. We want the smallest span that provides a smooth fit that is we want the span that minimizes both the bias and variability of the smoothed fit. A typical starting point is a span of 0.5 which implies that 50% of the data will be included in the local fit. If the fitted smoother looks too rough the span is increased, if it looks smooth, we see if it can be decreased without making the fit too rough. \(^2\)

While local polynomial smoothers are very useful for scatterplot smoothing and other basic uses of smoothers, the focus on most of the research on smoothing in statistics has been on splines. Splines more readily lend themselves to incorporation into parametric models in the form of generalized additive models (GAMs), are more flexible and have better analytic properties (Wood 2006). The most recent texts on smoothing and semiparametric estimation focus almost exclusively on splines with local polynomial regression being mentioned only in passing (Ruppert, Wand and Carroll 2003; Wood 2006).

2 Splines: How Many Knots and Where Do I Tie Them?

As I mentioned before, splines are piecewise polynomial functions that are constrained to join at points called knots. As I mentioned before there are a variety of splines but most of these names differ due to advances in spline fitting techniques. While the choice of the polynomial degree and basis functions used to matter, they are of little consequence now. In

\(^2\)There are automatic methods for selection of the bandwidth parameter but I don’t discuss them since unlike with smoothing splines the confidence intervals for these automatic routines do not reflect uncertainty in the bandwidth estimates.
applied use, most analysts use natural cubic B-splines. Cubic splines are made to be smooth at the knots by forcing the first and second derivatives of the function to agree at the knots. Natural cubic splines constrain the pattern to be linear before the first knot and after the last knot by adding a knot at each boundary. This requirement avoids wild behavior near the extremes of the data. B-basis functions are used for numerical stability (Ruppert, Wand and Carroll 2003). The perennial question with splines is how many knots and where should they be placed? This question is important since it involves the exact same bias variance tradeoff of span selection.

Stone (1986) found that where the knots are placed matters less than how many knots we use. Given this, typically the knots and evenly spaced intervals in the data (quantiles or quintiles for example). Equally spaced intervals ensure that there is enough data with each region of x to get a smooth fit. So then how many knots? Typically, people use between 3 to 7 knots. The selection process is typically done visually, with 4 being a natural starting point, If the fitted smoother looks too rough more knots are added, and if the fit is overly, knots are deleted. For sample sizes above 100, 5 knots typically provides a good compromise between flexibility and overall fit. For smaller samples, say below 30, 3 knots is a good starting point. Knot selection can also be done via Akaike’s Information Criterion (AIC). One chooses the number of knots that returns the lowest AIC value. Knot selection is not without its complications. Change points and curvature can be obscured by incorrect knot selection. But knot selection has become mostly moot with the introduction of smoothing splines.

2.1 Smoothing Splines

The literature on smoothing splines is extensive and there a few varieties all of which focus on minimizing the bias-variance tradeoff of smoothing(Hastie and Tibshirani 1990; Hastie 1996; Eilers and Marx 1996). In general, smoothing splines are the solution to the following penalized sum of squares:

$$SS(f, \lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int_{x_1}^{x_n} f''(x)^2 dx$$

(1)
The first term is a sum of squares, that is we are minimizing the squared fit between y_i and the nonparametric fit, $f(x_i)$. But we are now minimizing this function subject to a constraint. The second term is our constraint known as a roughness penalty. This term is large when the integrated second derivative of the regression function $f''(x)$ is large, that is when $f(x)$ is rough. But this term is controlled by the size of λ, which must always be positive. Here, λ establishes the tradeoff between closeness of fit to the data and the penalty. It is analogous to the bandwidth for a lowess smoother. As you decrease $\lambda = 0$ then $\hat{f}(x)$ interpolates the data and we get a very rough fit. As $\lambda \to \infty$ the second derivative is constrained to zero and we get the very smooth least squares fit. In general, as λ increases, we get a smoother fit to the data, but also again perhaps a biased fit. As the parameter decreases, we get a very good fit that has increased of variance.

For smoothing splines, knot location is not an issue. Once the penalty is introduced, the number of knots and their location no longer has much influence on the smoothness of the fit. For many types of smoothing splines, knots are placed at all unique values of x_i. One might think that having that many knots would mean that we have too many parameters, but the penalty term ensures that the spline coefficients are shrunk towards linearity thus limiting the approximate degrees of freedom (Ruppert, Wand and Carroll 2003). Other algorithms place knots an equal intervals in the data. But given the role of the smoothing parameter, λ, it would seem that we have not solved the problem just moved it. We have traded one problem for another, knots no longer influences the fit, but we now need to choose some value for λ?

2.2 Automatic Smoothing

The use of smoothing splines no longer requires choices about knots but an analyst must now decide on the “best” value for λ. In theory, the “best” value of λ will be one that minimizes the mean square error. So we could calculate it as a function of the nonparametric mean square error:

$$L(\lambda) = n^{-1} \sum_{i=1}^{n} (f(x_i) - \hat{f}_\lambda(w_i))^2$$

(2)
The estimate of λ will depend on the unknown true regression curve and the inherent variability of the smoothing estimator. We cannot calculate this quantity directly since f is unknown. There are a number of different methods for estimating λ, but I will outline two methods. The first is to estimate λ we use cross-validation. With ordinary cross validation, we calculate the ordinary cross validation score as follows:

$$\nu = \frac{1}{n} \sum_{i=1}^{n} (f[-i] - y_i)^2$$

(3)

The cross validation score is calculated from leaving out one value of y_i, fitting the model to the remaining data and calculating the squared difference between the missing datum and its predicted value. These squared differences are then averaged over all the data. But ordinary cross validation is both computationally intensive and suffers from an invariance problem (Wood 2006). Instead we can define the following generalized cross validation score (GCV):

$$\nu_g = \frac{n}{\text{tr}(1-H)} \sum_{i=1}^{n} (y_i - \hat{f}_i)^2$$

(4)

Here H is called the hat matrix and \hat{f}_i is an estimate fitting all the data. H is roughly equivalent to $X(X'X)^{-1}X'$. The GCV can be done in a single step and does not suffer from the same invariance as ordinary cross validation (Wahba 1990). GCV is the most commonly used method for choosing the value for λ.

Other analysts have developed another methods for the estimation of λ. Ruppert, Wand and Carroll (2003) outline how smoothing splines can be represented as a mixed model and estimated with a restricted maximum likelihood estimator (REML). Here, λ is just another parameter to be estimated as part of a restricted likelihood maximization. Monte Carlo studies have shown that the performance is about the same across either GCV or estimating lambda via restricted maximum likelihood (Ruppert, Wand and Carroll 2003).

Regardless of which approach one uses, GCV or REML, the confidence bands can be estimated to reflect the uncertainty of estimating λ. When λ is estimated via GCV, a Bayesian confidence interval is used. By imposing a penalty on the smoothed fit, we are imposing a

3 More precisely for a smoothing spline with a cubic basis, $H = X(X'X + \lambda S)^{-1}X'$. Where S is a matrix that contains the basis functions. See Wood (2006) for details

4 GCV can also be used for bandwidth selection in local polynomial regression. I focus on splines, since splines have better analytic properties and the confidence bands for local polynomial regression with GCV do not reflect...
prior belief about the characteristics of the model, and Bayesian confidence intervals reflect this prior belief (Wood 2006; Wahba 1983; Silverman 1985). In the REML context, the confidence intervals are easily estimated with the variance components of the mixed model used to estimate the smoothed fit (Ruppert, Wand and Carroll 2003).5

In short, there is little need to guess about the level of smoothness when estimating nonparametric fits. While some have described automatic smoothing parameter selection as a “blackbox,” in truth here we are merely estimating the level of smoothness from the data Beck and Jackman (1998). In the next section, I outline some objections to automatic smoothing parameter selection and outline several reasons why in many cases automatic parameter selection is preferable to visual methods of parameter selection.

2.3 Objections to Automatic Parameter Selection

Beck and Jackman (1998) object strongly to the use of automated procedures for choosing smoothing parameters. They have three major objections to automatic smoothing parameter selection. First, they argue that theory should guide the selection of the smoothing parameter, and hence the amount of smoothing applied to the process. Second, they maintain that automatic smoothing parameter algorithms tend to overfit the data and produce jagged fits. Finally, they believe that most political processes are not flamboyantly nonlinear and that automatic parameter selection tends to provide fits that are too local and as such produce fits that are overly nonlinear. In short, Beck and Jackman (1998) reject the use of automatic smoothing parameter selection methods. While their concerns are valid, their judgments may be too hasty. I take their points one-by-one.

First, many theories in political science are articulated at very general level. A level that, at best, may predict a linear versus a nonlinear functional form, but is rarely specific enough to provide any information about how smooth the relationship may be between an \(x \) and a \(y \). In many instances then, theory is no guide at all for selection of the smoothing parameter.

Moreover, smoothing is often used in contexts where there is no reason to have a theory. For

\(\text{5One drawback to using automatic smoothing parameter selection is that it cause p-values for hypothesis tests to be too low. Analytic and simulation work has not yet developed precise guidelines for correcting p-values, but if hypothesis tests are important and a p-value is quite close to the threshold, 7 recommends selecting the smoothing parameter though visual inspection to ensure that the p-values are correct.} \)
example, smoothed time terms are used to deal with duration dependence in binary time series cross sectional data sets. It is unlikely that an analyst will have any theoretical priors on how smooth the fit between time and \(y \) is. Moreover, smoothers are important diagnostic tools and are often used to smooth residual plots. This is another setting where theory will be of little help.

More importantly, the confidence bands that are estimated after visual selection of the smoothing parameter are misleading. An analyst may plot four or five fits each with a different smoothing parameter. Each fit may be slightly different but show the same overall pattern. The analyst then selects one of the fits and typically will then estimate 95% confidence bands. These confidence bands do not in any way reflect the analyst’s uncertainty as to which of the smoothed fits is best. The confidence bands are typically estimated via point wise standard errors and a normal approximation. They do not capture any uncertainty as to the analysts choice of the smoothing parameter.

With automatic parameter selection, the confidence bands reflect the estimation uncertainty of the estimate for the smoothing parameter.\(^6\) The estimate of \(\lambda \) provided by either REML or GCV is subject to estimation uncertainty. This estimation uncertainty is equivalent to the analysts’ uncertainty over which smoothing parameter to choose. But the estimation uncertainty for \(\lambda \) will be incorporated into the estimated confidence intervals, while the analysts uncertainty over which bandwidth to use will not be reflected in the confidence bands. Here, automatic parameter selection is superior to visual methods as it better captures our uncertainty about the level of smoothness.

Their claim that automatic smoothing parameter selection produces jagged fits that are highly nonlinear is an empirical one that we can evaluate with data. I maintain that automatic smoothing produces fits that are both good estimates of the underlying process but also smooth and rarely. Their experience with finding jagged fits is mostly likely software induced. Newer smoothing splines routines use better algorithms that eliminate such jagged fits.\(^7\)

Finally, advocating the use of automatic parameter selection is not to suggest blind ad-

\(^6\)This is not always strictly true. Some software for smoothing splines simply uses the standard pointwise confidence bands.

\(^7\)For example, I have found that \texttt{sm.spline} function in the \texttt{R} library \texttt{pspline} often produces jagged fits when GCV is used. Newer smoothing spline packages such as those found in \texttt{mgcv} and \texttt{SemiPar}, however, produce much better fits.
herence to its estimates. Empirical results should not be highly sensitive to the choice of the smoothing parameter. In the context of estimating effects in GAMs, a fit done with an automatic smoothing parameter algorithm should be compared to some fits with the smoothing chosen by visual inspection. Analysts should report if automatic smoothing differs dramatically from fits that use reasonable ranges of smoothness. Here, the automatic smoothing can serve as an important check on the analysts assumptions about how smooth the process is. I now turn to an empirical evaluation of automatic smoothing techniques. Using simulated data, I can evaluate the level of nonlinearity and how jagged the fit is provided by these techniques.

3 Comparing Smoother Performance

It is relatively easy to compare how well different smoothers perform using simulated data. The analysis, here, proceeds in two stages. In the first stage, I simulate a y that is a highly nonlinear function of x. I plot the true relationship between the two simulated variables and compare how well different smoothers estimate, f, the relationship between x and y. For a more precise comparison, I also calculate the mean squared error for each smoothed fit. In the comparative analysis, I compare one local polynomial smoother, lowess, natural cubic B-splines and smoothing splines. For the lowess smoother, I selected the span via the visual method. For the natural cubic B-splines I selected the number of knots using the AIC. For the smoothing splines, no input was required. In this first test, the highly nonlinear nature of the function makes it easier to select a fit with the visual method. In the second stage, I simulate a y where the nonlinearity is less obvious. The highly nonlinear functional form for y takes the following form:

$$y = \cos^2(4\pi x^3)$$ \hspace{1cm} (5)

where

$$\varepsilon \sim N(0, 0.6)$$ \hspace{1cm} (6)

The results are in Figure 3. The first panel in the figure plots the actual function and
the true smoothed fit between x and y. The results for lowess smoother are quite good. There is some undersmoothing, but in general, the fit between x and y is very close. One problem is that using the visual method in this context is misleading. For such a nonlinear function, the eye can more easily discern the pattern between x and y. So the test, here, isn’t very conservative for the lowess smoother. But as we can see for the natural B-splines, knot selection via the AIC does a poor job of estimating the smoothed fit between x and y. The results, here, suggest that AIC is an imperfect criterion for knot selection. In the final panel is the smoothing spline fit, which didn’t require any input from the analyst. While some minor undersmoothing does occur, overall the fit is excellent.

Table 1 contains the MSE for each smoother. The MSE allows for a more precise judgement of each smoother fit. Using the mean squared error criterion the difference between lowess and smoothing splines is negligible. So while one can get a very good fits with lowess, the fit with smoothing splines is better. Moreover, one achieves superior fit with no guesswork from the analyst. Plus lowess smoothers are almost never incorporated into the newer software for fitting GAMs, so one is unable to use the lowess smoother for an important application of smoothers.

<table>
<thead>
<tr>
<th>Smoother</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowess</td>
<td>0.0052</td>
</tr>
<tr>
<td>Cubic B-Splines</td>
<td>0.0469</td>
</tr>
<tr>
<td>Smoothing Splines</td>
<td>0.0039</td>
</tr>
</tbody>
</table>

In the next analysis the functional form of y now takes the following form:

$$y = \cos^4(4 \times e^{x^3})$$ \hspace{1cm} (7)

where

$$\varepsilon \sim N(0,1)$$ \hspace{1cm} (8)

This produces a relationship between x and y that is much harder for the eye to discern.

8. Demonstrates the asymptotic equivalence between AIC and cross validation. The results, here suggest that it requires large sample sizes for the two to converge.
Figure 1: A Comparison of Estimated Smoother Fits.
A scatterplot of the two variables is in Figure 2 along with the true fit between x and y. Here, visual identification of how smooth the relationship between x and y is will be much more difficult.

![Figure 2: A Simulated Nonlinear Smooth Functional Form](image)

In Figure 3 I plot a lowess fit with six different bandwidths along with a smoothing spline fit done with automatic parameter selection. In general, the lowess produces a variety of fits that all roughly capture the true relationship between x and y. While one of the fits is obviously too rough and others are too smooth, two or three produce fairly reasonable fits and might be reasonably chosen. It is this uncertainty that will not be reflected in the estimated confidence bands. The smoothing spline fit very closely matches the true functional form.
form, but does so with no input from the analyst and the estimation uncertainty of λ will be reflected in the confidence bands. Finally, I plot the lowess with the lowest MSE against the smoothing spline fit in Figure 4.

Interesting the lowess fit with the lowest MSE (at 1.01) is a fairly rough fit and one that would almost never be chosen by an analyst. The smoothing spline fit is quite smooth with an MSE of 1.02. Lowess fits that are smoother have MSE values that are slightly higher than that of the smoothing spline. The results, here, demonstrate that smoothing spline fits with automatic parameter selection produce fits that closely match the true relationship between x and y. Moreover, the smoothing spline fits are not jagged in any way. I, next, turn to some empirical examples to further demonstrate how well smoothing splines perform.

4 Overdrafts and Congress Revisited

Figure 4: Lowess Fit Chosen By MSE and Smoothing Spline Fit
model they replicate demonstrates how the number of overdrafts in the House banking scandal affected the challengers vote share in the 1992 Congressional elections. They use a GAM to replace a logarithmic term for the number of overdrafts with a smoothed loess fit. To demonstrate that using automatic smoothing techniques produces no greatly different fit with real data, I plot in Figure 5 spline fits with varying degrees of freedom and a smoothing spline fit where the smoothing parameter was estimated via GCV.

Figure 5: Manual Fitting Compared to Automatic Selection For Overdrafts

The first panel of Figure 5 contains a plot where the amount of smoothing was estimated...
by GCV. First, there is no sign of undersmoothing or a jagged fit. Second, the fit is also not highly nonlinear. While there are some minor differences, we observe the same pattern where the effect of the number of overdrafts on challenger’s vote share levels off once a threshold is met. The confidence bands for the smoothing spline are also more accurate as they reflect estimation uncertainty for λ, while for the other fits, the confidence bands do not take this uncertainty into account. The evidence, here, suggests that automatic smoothing parameter selection produces fits that are equally smooth as user selected fits but appeal to data instead of guesswork. Moreover, the smoothing spline fit produces confidence bands that more accurately reflect our uncertainty. I, next, examine automatic smoothing parameter selection in a different empirical context.

5 Smoothing Time For Binary TSCS

One area of political science where splines are frequently used is in the analysis of binary time-series cross sectional data. As Beck, Katz and Tucker (1998) demonstrate, including a smoothed time counter on the right hand side of a logit model will account for duration dependence in such data. While a number of functional forms for time are possible, they recommend using natural cubic splines for fitting such models. Of course, while natural cubic splines are a reasonable choice, they do require the analyst to choose the number of knots. This is an area where analysts are unlikely to have strong prior convictions about the number of knots required. Smoothing splines, of course, relax the requirement that analysts make decisions about the number of knots or the degree of smoothing. Here, I examine whether using smoothing splines improves the overall fit of the model versus having the analyst choose the number of knots.

Performing such a test is quite simple. The model with cubic splines and the smoothing spline model are nested which implies that a likelihood ratio test between the model with analyst chosen knots and a model that uses smoothing splines will tell us whether there is any statistically significant difference between the two models.\(^9\). For the test I re-estimate

\(^9\)The models are only approximately nested, but most texts argue that while the likelihood ratio test is only approximate, it is still reasonably accurate (Ruppert, Wand and Carroll 2003; Wood 2006)
the logit model with natural cubic splines from Beck, Katz and Tucker (1998)10. I then estimated the same model using smoothing splines and used GVC for the selection of the smoothing parameter. I then performed a likelihood ratio test. I do not present the specific results from the two models, which are immaterial, but the results from the likelihood ratio test are in Table 2.

Table 2: Likelihood Ratio Test Between Cubic and Smoothing Splines

<table>
<thead>
<tr>
<th>T-statistic</th>
<th>8.76</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>0.01</td>
</tr>
<tr>
<td>χ^2, df</td>
<td>≈ 2</td>
</tr>
</tbody>
</table>

The use of smoothing splines improves the overall fit of the model considerably, as we are able to reject the null that the extra parameters in the smoothing spline model are unnecessary at the 0.01 level. Here, then, smoothing splines remove the uncertainty about the number of knots while also improving the overall fit of the model.11

6 Diagnostic Hazard Plots

Smoothers are also important tools for the examination of diagnostic plots. Here, the eye can be deceived by what may or may not be a pattern in the plot, while smoothers can help reveal patterns and detect nonlinearities. But with residual plots, the analyst is unlikely to have any theory to guide the number of knots or the degree of smoothing necessary. Moreover, with splines not enough knots or undersmoothing can make a pattern appear linear when we are trying to detect nonlinearity. In such situations, it is far better to rely on an automatic smoothing procedure and let the data, typically in the form of model residuals, speak for itself.

One diagnostic where we might want to use smoothing splines is in the detection of non-proportional hazards when using the Cox model for duration data. Box-Steffensmeier and

10Beck et al. estimate several models with splines. I only reestimated the logit spline model from Table 1.

11The only cost comes in the form of the software used. Smoothing splines are currently unavailable in Stata. I should also note that Beck, Katz and Tucker (1998) advise that they forgo the use of smoothing splines so that the analysis can be conducted in Stata. Presumably had they used smoothing splines, they would not have used them in conjunction with automatic smoothing parameter selection given they objections raised in Beck, Katz and Tucker (1998).
Zorn (2001) outline how a key assumption for the Cox model is that the hazard ratios are proportional to one another and that proportionality is maintained over time. One diagnostic that they recommend is the visual examination of the smoothed Schoenfeld residuals for the estimated model in question. To generate such a plot, the analyst must choose either the span for a lowess smoother or the degrees of freedom if using a spline based smoother. If smoothing splines with GCV are used the analyst need not worry about such choices. To demonstrate the difference between the visual method of selection and automated smoothing, I use the same data on international disputes as Box-Steffensmeier and Zorn (2001). The data set is composed of 827 “politically relevant” dyads for the period from 1950 to 1985. Each observation is composed of a dyad year, for a total of 20,900 observations with an average of 25.4 years per dyad. The outcome variable is the time until the onset of a militarized interstate dispute between the two nations that make up the dyad (Oneal and Russett 1997; Beck, Katz and Tucker 1998; Reed 2000; Box-Steffensmeier and Zorn 2001). Box-Steffensmeier and Zorn (2001) demonstrate that several of the covariates have time varying effects that cause nonproportional hazards and use a lowess smoother to demonstrate the visual diagnosis of nonproportional hazards.

Here, I demonstrate the difference between lowess fits and a smoothing spline with automatic smoothing. I plot the Schoenfeld residuals for one covariate and applied both smoothing splines and a lowess smoother with various spans. Diagnostic plots such as these are another context where theory will be of little help in selecting the amount of smoothing to apply. Figure 6 contains plots for one of the variables that displays a significantly nonproportional hazard.

In Figure 6, we see a single fit for the smoothing spline and noticeable variability in the lowess fit depending on the bandwidth selected. The overall inference doesn’t change. Nor should we expect it to since one of the smoothed fits chosen by trial and error should closely match the automated smoothing spline fit. And in general, different smoothers and smoothing choices should produce similar results. But again, the difference is that, here, we have no theory about how smooth such an error process should be. We have no criteria for deciding among the various lowess fit and the confidence bands will not reflect this uncertainty. But with the smoothing spline fit, we can estimate the appropriate amount of smoothing and the
Figure 6: Plot of Schoenfeld Residuals With Lowess and Smoothing Spline Fits
confidence bands will reflect this estimation uncertainty.

7 Conclusion

Smoothers are an important component of analysts’ toolkit. They can be used to estimate nonlinear effects in parametric models, control for duration dependence in binary time series cross sectional datasets, smooth hazards, reveal functional forms in scatterplots, and aid in the testing of model assumptions.

But given the variety of smoothers and the choices required when using each smoother, the results from using smoothers can appear arbitrary. While, in fact, for most smoothers, only one choice really matters—the choice of bandwidth or equivalently the degrees of freedom—that choice can still engender controversy. Undoubtedly, some of the controversy stems from the visual method of making this choice. But as I have demonstrated, often there is no need to resort to visual methods when using smoothers. Smoothing splines with automatic smoothing parameter selection allow the analyst to estimate smoothed fits that rely on the data itself to select the amount of smoothing. They also produce confidence bands that better reflect our uncertainty about how smooth a process is.

Of course, analysts should not rely solely on automatic parameter selection. If they, in fact, have a theory about the level of smoothness or the results from automatic selection seem overly nonlinear or rough, they can then select the amount of smoothing. Moreover, plotting some manually selected smoothed fits versus one chosen via GVC or REML serves as a useful diagnostic to ensure that the automatic fit isn’t unusually rough or too nonlinear.

But barring theoretical concerns, analysts are often better off letting the amount of smoothing be estimated from the data. Automatic smoothing removes any hint of art from the process, and more importantly provides confidence bands that more accurately reflect our uncertainty about the level of smoothness. As I have demonstrated, automatic smoothing produces excellent fits in simulated data and good estimates with real data. So in short, there are no real objections to use automatic smoothers and more importantly several reasons that we should be using them.
References

