Chapter 5
- Normal distribution (5.1)
- Central limit theorem (5.2)
- Normal distribution for p-values (5.2)
- Normal distribution for confidence intervals (5.2)
- Standard normal (5.2)

Malaria Parasites and Mosquitoes
- Mice were randomized to either eat from a malaria infected mouse or a healthy mouse.
- After infection, the parasites go through two stages:
 1) Oocyst (not yet infectious), Days 1-8
 2) Sporozoite (infectious), Days 9 – 28
- Response variable: whether the mosquito approached a human (in a cage with them)
- Does this behavior differ by infected vs control? Does it differ by infection stage?
- Dr. Andrew Read, Professor of Biology and Entomology and Penn State, is a co-author

Malaria Parasites and Mosquitoes
- Malaria parasites would benefit if:
 - Mosquitos sought fewer blood meals after getting infected, but before becoming infectious (oocyst stage), because blood meals are risky.
 - Mosquitoes sought more blood meals after becoming infectious (sporozoite stage), to pass on the infection.
- Does infecting mosquitoes with Malaria actually impact their behavior in this way?

Oocyst Stage
We’ll first look at the Oocyst stage, after the infected group has been infected, but before they are infectious.

\(p_I \): proportion of infecteds to approach human

\(p_C \): proportion of controls to approach human

What are the relevant hypotheses?

a) \(H_0: p_I = p_C, H_a: p_I < p_C \)

b) \(H_0: p_I = p_C, H_a: p_I > p_C \)

c) \(H_0: p_I < p_C, H_a: p_I = p_C \)

d) \(H_0: p_I > p_C, H_a: p_I = p_C \)

Data: Oocyst Stage

\[\hat{p}_I - \hat{p}_C = \frac{20}{113} - \frac{36}{117} = 0.177 - 0.308 = -0.131 \]
Randomization Test

Randomization Distributions

Normal Distribution

- The symmetric bell-shaped curve we have seen for almost all of our distribution of statistics is called a *normal distribution*

- The normal distribution is fully described by its mean and standard deviation:
 \[N(\text{mean}, \text{standard deviation}) \]

Randomization and Bootstrap Distributions

Malaria and Mosquitoes

- Which normal distribution should we use to approximate this?
 a) N(0, -0.131)
 b) N(0, 0.056)
 c) N(-0.131, 0.056)
 d) N(0.056, 0)

Normal Distribution

- We can compare the original statistic to this Normal distribution to find the p-value!
p-value from N(null, SE)

Exact same idea as randomization test, just using a smooth curve!

Statistics: Unlocking the Power of Data

Standardized Data

- Often, we standardize the statistic to have mean 0 and standard deviation 1
- How? z-scores!
 \[z = \frac{x - \text{null value}}{\text{SE}} \]
- What is the equivalent for the null distribution?

Standardized Statistic

The standardized test statistic (also known as a z-statistic) is

\[z = \frac{\text{statistic} - \text{null}}{\text{SE}} \]

- Calculating the number of standard errors a statistic is from the null lets us assess extremity on a common scale

Malaria and Mosquitoes:

- From original data: statistic = -0.131
- From null hypothesis: null value = 0
- From randomization distribution: SE = 0.056

\[z = \frac{\text{statistic} - \text{null}}{\text{SE}} = \frac{-0.131 - 0}{0.056} = -2.34 \]

Compare to N(0,1) to find p-value...

Standard Normal

- The standard normal distribution is the normal distribution with mean 0 and standard deviation 1

\[N(0,1) \]

- Standardized statistics are compared to the standard normal distribution

p-value from N(0,1)

If a statistic is normally distributed under H_0, the p-value can be calculated as the proportion of a N(0,1) beyond

\[z = \frac{\text{statistic} - \text{null}}{\text{SE}} \]
Statistics: Unlocking the Power of Data

Sporozoite Stage

For the data from the Sporozoite stage, after infectious, what are the relevant hypotheses?

- p_C: proportion of controls to approach human
- p_I: proportion of infecteds to approach human

What are the relevant hypotheses?

a) $H_0: p_I = p_C$, $H_a: p_I < p_C$

b) $H_0: p_I = p_C$, $H_a: p_I > p_C$

c) $H_0: p_I < p_C$, $H_a: p_I = p_C$

d) $H_0: p_I > p_C$, $H_a: p_I = p_C$

Statistics: Unlocking the Power of Data

Proportion of Infected

- All mosquitoes in the infected group were exposed to the malaria parasites, but not all mosquitoes were actually infected
- Of the 201 mosquitoes in the infected group that we actually have data on, only 90 were actually infected ($90/201 = 0.448$)
- What proportion of mosquitoes eating from a malaria infected mouse become infected?
- We want a confidence interval!

Sporozoite Stage

The difference in proportions is 0.15 and the standard error is 0.05. Is this significant?

a) Yes

b) No

Statistics: Unlocking the Power of Data

Data

- **Oocyst Stage**
- **Sporozoite Stage**

The p-value is always the proportion in the tail(s) beyond the relevant statistic!

We have evidence that mosquitoes exposed to malaria parasites are less likely to approach a human before they become infectious than mosquitoes not exposed to malaria parasites.

The p-value from $N(0,1)$

Exact same idea as before, just standardized!
Bootstrap Interval

If a bootstrap distribution is normally distributed, we can write it as:

a) \(N(\text{parameter}, \text{sd}) \)
b) \(N(\text{statistic}, \text{sd}) \)
c) \(N(\text{parameter}, \text{se}) \)
d) \(N(\text{statistic}, \text{se}) \)

\(\text{sd} = \text{standard deviation of data values} \)
\(\text{se} = \text{standard error} = \text{standard deviation of statistic} \)

Normal Distribution

We can find the middle \(P\% \) of this Normal distribution to get the confidence interval!

CI from \(N(\text{statistic}, \text{SE}) \)

Same idea as the bootstrap, just using a smooth curve!

(Un)-standardization

- Standardized scale:
 \[
 z = \frac{x - \text{mean}}{\text{sd}}
 \]

- To un-standardize:
 \[
 z \cdot \text{sd} = x - \text{mean} \\
 x = \text{mean} + z \cdot \text{sd}
 \]
(Un)-standardization
- In testing, we go to a standardized statistic
- In intervals, we find \((-z^*, z^*)\) for a standardized distribution, and return to the original scale
- Un-standardization (reverse of z-scores):
 \[x = mean + z \cdot sd \]
- What’s the equivalent for the distribution of the statistic? (bootstrap distribution)

P% Confidence Interval
1. Find values \((-z^*, z^*)\) that capture the middle P% of N(0,1)
2. Return to original scale with statistic \(\pm z^* \times SE\)

Confidence Interval using N(0,1)
If a statistic is normally distributed, we find a confidence interval for the parameter using
\[statistic \pm z^* \times SE \]
where the proportion between \(-z^*\) and \(+z^*\) in the standard normal distribution is the desired level of confidence.

Confidence Intervals
Find \(z^*\) for a 99% confidence interval.
www.lock5stat.com/statkey
\[z^* = 2.575 \]

Proportion of Infected
- Proportion of infected mosquitoes:
 - Sample statistic (from data): 90/201 = 0.448
 - \(z^*\) (from standard normal): 2.575
 - SE (from bootstrap distribution): 0.037
- Give a 99% confidence interval for the proportion of mosquitoes who get infected.

\[z^* \]
- Why use the standard normal?
- \(z^*\) is always the same, regardless of the data!
- Common confidence levels:
 - 95%: \(z^* = 1.96\) (but 2 is close enough)
 - 90%: \(z^* = 1.645\)
 - 99%: \(z^* = 2.576\)
Confidence Interval Formula

IF SAMPLE SIZES ARE LARGE...

- From $N(0,1)$
- From original data
- From bootstrap distribution

\[
\text{sample statistic} \pm z^* \times SE
\]

Formula for p-values

IF SAMPLE SIZES ARE LARGE...

\[
z = \frac{\text{sample statistic} - \text{null value}}{SE}
\]

Compare z to $N(0,1)$ for p-value

Standard Error

- Wouldn’t it be nice if we could compute the standard error *without* doing thousands of simulations?
 - We can!!!
 - Or at least we'll be able to next class...

Malaria and Mosquitoes

- **Should we limit our analysis to only those mosquitoes that actually got infected? Why or why not?**
- **In favor of yes:**
 - We care about whether mosquitoes behave differently after being infected, not just after being exposed to an infection
 - Including mosquitoes that didn’t actually get infected may weaken results
- **In favor of no:**
 - Mosquitoes were not randomized to be infected or not, they were randomized to the possibility of becoming infected.
 - We could have confounding variables and could no longer make conclusions about causality
- **Methods for this, but beyond the scope of this course**

To Do

- Read Chapter 5
- Do HW 5.2 (due Friday, 10/30)