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Abstract. Attackers often corrupt data structures to compromise soft-
ware systems. As a countermeasure, data structure layout randomization
has been proposed. Unfortunately, existing techniques require manual
designation of randomize-able data structures without guaranteeing the
correctness and keep the layout unchanged at runtime. We present a sys-
tem, called SALADS, that automatically translates a program to a DSSR
(Data Structure Self-Randomizing) program. At runtime, a DSSR pro-
gram dynamically randomizes the layout of each security-sensitive data
structure by itself autonomously. DSSR programs regularly re-randomize
a data structure when it has been accessed several times after last ran-
domization. More importantly, DSSR programs automatically determine
the randomizability of instances and randomize each instance indepen-
dently. We have implemented SALADS based on gcc-4.5.0 and generated
DSSR user-level applications, OS kernels, and hypervisors. Our experi-
ments show that the DSSR programs can defeat a wide range of attacks,
and the performance overhead is acceptable.

1 Introduction

In programs developed in C or C++ language, encapsulated data objects, such as
struct and class, are widely defined to group a list of logically related variables.
In this paper, we denote these encapsulated data objects as data structures1.
Not surprisingly, data structures are in the meantime the target or aid of a wide
variety of attacks. Attackers often leverage knowledge about data structures
defined in a victim program to construct successful exploits against it. This is the
case for both application programs and system programs (e.g., operating system
kernels and virtual machine monitors). A data structure contains a set of fields.

1 In a broad sense, a data structure means a particular way of organizing data in a
program so that it can be used efficiently. In this paper, we narrow down the scope
of data structures to be encapsulated data objects in C or C++ programs.
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Knowledge about a data structure’s layout, namely how the fields neighbour each
other inside the data structure, can be very useful to the attacker. For example,
knowing the layout of accounting/book-keeping data structures, on-line gaming
fraud [11] can be performed by modifying the values of relevant fields; Knowing
the layouts of in-stack or in-heap data structures will help construct memory
corruption exploits (e.g., privilege escalation attacks against openssh-2.1.1 [14]);
Guided by the layout of the process control block (PCB), a kernel rootkit is able
to hide a process by locating and manipulating certain pointer fields. We define
attacks that locate a data structure and manipulate specific fields after knowing
its layout as data structure manipulation attacks.

Randomizing either the location or the layout of the target data structure
will significantly raise the bar for data structure manipulation attacks. There
have been two lines of research towards achieving such randomizing goals: (1)
Address Space Layout Randomization (ASLR) randomly arranges the base ad-
dresses of segments (e.g., stack), which has been widely researched and deployed.
Recently, fine-grained ASLR techniques have been proposed to achieve random-
ization at different levels, including page level [6], function level [23], basic block
level [28], and instruction level [38,20]. (2) Data Structure Layout Randomiza-
tion (DSLR) [25,34] reorders the fields or inserts dummy fields in encapsulated
data objects (e.g., struct). With DSLR deployed, the layouts of data structures
are randomized to break the mono-culture of programs.

However, ASLR or fine-grained ASLR techniques have two limitations: (1)
ASLR is vulnerable to memory content leakage [33,12,35,31,22,10,30,43]. By
leveraging memory contents leakage, an attacker can infer the base addresses of
memory regions (e.g., segments or pages) under ASLR. Knowing the offset of
the target data structure in the containing region2, the attacker can figure out
its base address. (2) ASLR can be easily circumvented by rootkits, such as those
leveraging Direct Kernel Object Manipulation (DKOM) [29,8,22]. In many cases,
a rootkit knows the base address of the target data structure even if ASLR is
deployed. For example, kernel global data structures can be located by referring
to kernel symbols (i.e., /proc/kallsyms). In other cases, a rootkit has no such
knowledge, but it has the privilege to read arbitrary memory and thus can infer
such a base address2.

In this paper, we present a novel technique, adaptive DSLR, to defend against
data structure manipulation attacks. We design a compiler-based system, called
SALADS3, to implement our technique. SALADS transforms a program into a
Data Structure Self-Randomizing (DSSR) program. A DSSR program periodical-
ly re-randomizes a data structure after the data structure has been accessed for
a certain number of times since last re-randomization. The re-randomization is
independently and asynchronously performed on each instance even if they have
the same data structure definition. To avoid errors (e.g., pointer reference corrup-
tion), SALADS automatically determines the randomizability of data structure

2 By simulating the execution in local environment without ASLR, the attacker can
infer the offsets from the target data structures to a particular memory region.

3 SALADS stands for Self Adaptation of LAyout of Data Structures.
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instances without programmer’s input and de-randomizes a data structure that
might have been unsafely randomized.

SALADS can address the two limitations of ASLR: suppose the base address
of the target data structure is exposed when memory content leakage happens or
when a rootkit is launched. The layout of the data structure is randomized when
SALADS is deployed. Therefore, the attacker in general cannot accurately locate
specific fields. Even if the attacker could infer the current layout of the target
data structure, the attacker could be stopped by the adaptation (i.e., dynamic
self-re-randomization). In one attack, the layout inferring part and the data
structure manipulation part are typically completed in chronological order. After
the layout inferring but before the data structure manipulation, DSSR programs
may have already re-randomized the target data structure. Consequently, the
attacker would mistakenly manipulate irrelevant fields.

We refer the existing DSLR technique [25,34] as static DSLR. Compared with
static DSLR, our adaptive DSLR offers several unique features: (1) Instead of
randomizing data structures layout at compile-time/load-time, DSSR programs
generated by SALADS re-randomize data structures at runtime. Without this
feature, static DSLR shares the two limitations with ASLR. When memory con-
tent leakage happens or when a rootkit is launched, the randomized layout of
the target data structure can be reverse engineered (e.g., [7]). Examples of how
to reverse engineer the layout are presented in Section 2. Once the layout of
the target data structure is inferred, the attacker could correctly manipulate
specific fields. (2) A DSSR program randomizes each data structure instance in-
dependently and asynchronously, regardless of their types. Without this feature,
static DSLR can be circumvented in situations where the target data structure is
not initialized. For example, rootkits can speculate the layout of the target data
structure instance by referring another initialized instance of the same type. In a
kernel with static DSLR deployed, the layout inferred in such a way enables the
rootkits to successfully manipulate the expected fields. (3) In case an instance
is involved in a statement that might cause inconsistency or crash, the DSSR
program will restore the instance to its original layout. The restoring process is
denoted as de-randomization.

Our contributions in this work are as follows:

– This is the first effort toward runtime adaptive DSLR.

– Our experiments show that DSSR programs are able to address the two
limitations of ASLR in thwarting data structure manipulation attacks.

– DSSR programs generated by SALADS automatically determine the ran-
domizability of data structures without programmers’ assistance. Instances
determined to be un-randomizable will be de-randomized to avoid errors.

– SALADS achieves both cross instance diversity (different randomized layouts
for different instances of the same type) and cross time diversity.

– On average, the performance overhead introduced by SALADS is (1) 6.3% for
application programs (randomly selecting 20% of data structures to protect
in SPECInt2000, httpd-2.0.6, openssh-2.1.1p4, and openssl-0.9.6d);
(2) 16.7% for OS kernels (selecting 23 security-sensitive data structures
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Fig. 1. Privilege escalation in openssh under ASLR and static DSLR

to protect in Linux kernel); (3) 4.5% for hypervisor (selecting 20 security-
sensitive data structures to protect in Xen hypervisor).

2 Overview

2.1 Threat Model

Our threat model focuses on data structure manipulation attacks. We subdivide
such an attack into three steps: (Step-I) attacker gets the memory location of
a data structure instance; (Step-II) attacker figures out its layout; (Step-III)
attacker reads/writes certain fields of the instance.

Data Structure Manipulation with Memory Content Leakage in Ap-
plications. We take the privilege escalation attack against openssh-2.1.1 (CVE-
2001-0144) [14] as an illustrating example. The goal of the attack is to modify
the field pw uid in the instance pw (of type struct passwd) to escalate the re-
mote shell with root privilege. The three steps in this attack are as follows. First,
the attacker gets to know the base address of pw; Second, the attacker figures
out the layout of pw; Third, the attacker writes the maliciously-crafted value to
pw->pw uid by exploiting an integer truncation bug.

In Figure 1, we present how to conduct the above privilege escalation at-
tack under ASLR and static DSLR (the base address and the layout of pw are
both randomized). At Step-I, an attacker can resort to memory content leakage
(e.g., memory disclosure [33], uninitialized memory tracking [12], side channel
[10,30,43]) (¶). Assuming the attacker has obtained the disclosed memory page
that contains pw, he/she can search the signature of struct passwd4 in the page.

4 Inside struct passwd, pw uid and pw gid are identify numbers with small values (
≤ 0xFFFF ); pw passwd, pw name, pw shell, and pw dir are four pointers and their
values form an arithmetic progression with common difference of 16; pw gecos is 0.
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Fig. 2. System Overview

If the search succeeds, the attacker can locate the base address of pw. At Step-
II, the attacker can reverse engineer the contents of pw to recover locations of
specific fields (e.g., pw uid and pw gid have unique values4) (·). Since ASLR
and static DSLR do not randomize pw at runtime, the attacker can correctly
modify pw uid and pw gid (¸) to escalate the privilege.

Data Structure Manipulation by Rootkits under ASLR and static D-
SLR. Many rootkits achieve their goals via manipulating data structures, such
as the one presented in [21]. However, ASLR and static DSLR make such ma-
nipulation more difficult (by randomizing the base address and the layout of
the target data structure). In Section 1, we have explained how a rootkit can
bypass ASLR and static DSLR. For instance, taskigt is a rootkit that stealthi-
ly promotes privileges of a process when the process opens a specific proc file.
The rootkit attempts to modify a local data structure instance proc ent of type
proc dir entry. Most fields in proc ent are not initialized, including the target
field read proc (a function pointer). The rootkit can infer read proc in a global
variable proc root of type proc dir entry by reverse engineering (most fields
in proc root are initialized). In this way, the rootkit can locate read proc in
proc ent (read proc in proc ent and proc root have the same offset). Then
the rootkit manipulates read proc, to make it point to a malicious function.

2.2 System Overview

Key Idea. By breaking any of the three steps in the threat model, we would
be able to defeat a data structure manipulation attack. However, since it is
hard to eliminate memory content leakage and rootkits, attackers can succeed at
Step-I and Step-II even if modern defenses are deployed. Our idea is to disrupt
Step-III. Specifically, we adaptively randomize layout of each data structure
instance independently at runtime. The key is that the target instance might
be re-randomized between Step-II and Step-III. Therefore, the attacker may not
accurately access the targeted fields.

Compilation Steps. We design SALADS to realize the above idea. SALAD-
S is built on top of the GNU GCC compiler. Figure 2 shows the compilation
steps of SALADS, with the white boxes indicating the original GCC compi-
lation phases. As shown in the figure, SALADS adds two key components to
GCC: the extraction component and the randomization/de-randomization com-
ponent. We briefly explain the compilation steps as follows. (1) SALADS parses
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the source code into an Abstract Syntax Tree (AST). (2) The extraction com-
ponent (i.e., AST-Pass) traverses the AST to collect required information for
the randomization/de-randomization component. (3) SALADS transforms the
AST into the GIMPLE representation. (4) The randomization component (i.e.,
GIMPLE Pass-1) replaces each statement that accesses data structures with
DSSR statements. These DSSR statements randomize/re-randomize the layout
of the accessed data structures at runtime. (5) The de-randomization component
(i.e., GIMPLE Pass-2) inserts de-randomizing statements before each dangerous
statement to de-randomize involved data structures. We will explain which state-
ments are dangerous later. (6) SALADS compiles the GIMPLE representation
into a DSSR binary in remaining phases (e.g., SSA, RTL). The DSSR binary
can self-rerandomize/de-randomize data structure instances at runtime.

3 Design and Implementation of SALADS

3.1 Extraction Component

As shown in Figure 2, the extraction component is designed to gather defini-
tions of data structures and usages of external & shared APIs. The gathered
information is later used by the randomization/de-randomization component.

Extracting Data Structures. For each definition of data structure encoun-
tered during AST traversal, the extraction component records the name of the
data structure as well as the name, the size and the offset of each field. To cal-
culate the offset or size of a field in a data structure, two challenges need to be
tackled. The first one is the alignment. A compiler often allocates fields in a data
structure on aligned boundaries [39]. In our design, the extracting component
calculates the offsets of fields based on the compiling options specified by the
programmers (e.g., #param pack(n)). If no such options are available, the ex-
tracting component relies on the default alignment rules to redress the offsets.
The second challenge is how to handle arrays with flexible sizes [1]. If a field is an
array with flexible size, its size cannot be determined by the compiler. In such
a case, SALADS can only arrange this field to the end of the data structure.
Correspondingly, SALADS will mark this field as un-randomizable.

Identifying External and Shared APIs. External APIs refer to functions
that are used but not defined in a program. The extracting component records
usage of all external APIs. For a program, shared APIs are functions defined in
this program but publicly used by other programs. For instance, system calls are
shared APIs in the Linux kernel. Identifying shared APIs in a program requires
knowledge about which functions defined in this program are publicly used by
other programs. Such knowledge is often well documented.

3.2 Randomization Component

The randomization component (i.e., GIMPLE Pass-1) instruments the GIMPLE
representation. The instrumented program can self-randomize the layout of data



A Practical Approach for Adaptive Data Structure Layout Randomization 7

typedef struct

{

      int a;

      char b;

      char c;

      char * d;  

      int * e; 

}TEST;

0 4 5 8 12

0 0 0 0 0

4 1 1 4 4

Fo

Ff

Fs

TEST * p; 0 p

Ic Ia

a b c d e

(a) Randomization Record Initialization

1

Ic Ia

0 4 5 8 12
Fo

a b c d e

8 5 4 12 0

Fr

(1) (2) (3)

(4)

(5)

(b) Randomization Record Updating

p

0 4 5 8 12 Fr

shuffle(p)

Fig. 3. Initialization and updating of a randomization record

structures at runtime. The instrumentation replaces each statement that con-
tains data structure accesses with a set of DSSR statements, details of which are
presented next.

Data Structure Layout Randomization. First, GIMPLE Pass-1 iterates
statements in the GIMPLE representation. Second, the pass parses each state-
ment to identify data structure field accesses. For each field access, the pass
inserts the DSSR statements before the containing statement. The DSSR state-
ments firstly randomize the layout of the instance. Afterwards, if the access is
a read, the DSSR statements maintain the value of the accessed field in a tem-
porary variable. If the access is a write, the DSSR statements use a temporary
pointer to point to the after-randomized location of the accessed field. Finally the
pass replaces the parsed statement with a new statement. In the new statement,
each data structure field access is replaced with the corresponding temporary
pointer or the temporary variable.

A statement is parsed as follows. First, the statement is parsed into expres-
sions in a right-to-left order. If an expression is compound (e.g., a+b), it will be
decomposed into atomic expressions (e.g., a and b). If an atomic expression is a
data structure field access, the parser records the type of the instance, the ad-
dress of the instance, and the name of the field. In particular, the data structure
field access could be nested. For instance, A->B.x involves two nested accesses:
A->B and B.x. In such case, the parser firstly parses the outer access and then
parses the inner access. In the example of A->B.x, A->B is processed at first and
B.x is processed next.

The DSSR statements insertion for data structure field accesses follows the
same order as they are parsed. For an access, the inserted DSSR statements in-
clude: (1) a gimple statement to invoke the Initialize Record routine. The
routine first checks whether this instance is recorded. If not, it initializes a
randomization record. The randomization record contains following metadata
of the instance: Ia (memory address of this instance), Ic (how many times the
instance has been accessed since last randomization). A randomization record
also maintains the metadata for each field in the instance: Fo (original offset), Fr

(after-randomized offset), Fs (size), and Ff (randomization flag). The random-
ization flag indicates whether a field is randomizable; (2) a GIMPLE statement
to invoke the Update Record routine. This routine increases Ic by 1 and then
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1  typedef struct{

2       int a;

3       char b;

4       char c;

5       char * d;  

6       int * e;

7   }  TEST;

8

9   void main()

10 {

11     TEST * p;

12     p = (TEST *)malloc

            (sizeof(TEST));

13     TEST q;

14     p->a = 1;

15     q.c = ’a’;     

16  }

(a) Source Code

1  main()

2  {

3        void * D.1962;

4        struct TEST * p;

5        extern void * malloc

                         (unsigned int);  

6        struct TEST q;

7        D.1962 = malloc(16);

8        p = (struct TEST *) 

                                  D.1962;

9        p->a = 1;

10      q.c = 97B;

11 }

(b) GIMPLE Output by  GCC-4.5.0

1  main()

2  {

3          void * D.2052;

4          int p.0;

5          int * D.2054;

6          int q.1;      

7          char * D.2056;

8          struct TEST * p;

9          extern void * malloc 

                         (unsigned int);

10        struct TEST q;

11        int D.2057;

12        int * D.2058;

13        int D.2059;

14        char * D.2060;

15        D.2052 = malloc(16);

16         p = (struct TEST *) D.2052;

17         p.0 = (int)p;

18         Initialize_Record(0,p.0);

19         Update_Record(0,p.0);

20         D.2057 = Offset_Diff(0,1);

21         D.2054 = &p->a;      

22         D.2058 = D.2054 + D.2057;

23         *D.2058 = 1;

24         q.1 = (int) &q; 

25         Initialize_Record(0,q.1);

26         Update_Record(0,q.1);

27         D.2059 = Offset_Diff(0,3);

28         D.2056 = (char *)&q.c;

29         D.2060 = D.2056 + D.2059;

30         *D.2060 = 97B;

31  }

(c) DSSR GIMPLE Output by  SALADS

Fig. 4. An example showing how DSSR program generated by SALADS works

checks whether Ic exceeds a threshold Wm. If so, this routine randomly shuffles
the fields in the memory space of the data structure and records the after-
randomized offsets into Fr; (3) a GIMPLE statement to call the Offset Diff

routine for calculating the offset difference between the randomized layout and
the original layout (in term of fields); (4) a GIMPLE statement to assign the
after-randomized field (or its location) to a temporary variable (or a pointer).

Example. We present an example in Figure 4 to illustrate how the randomiza-
tion component works. Figure 4(a) shows the source code of the program; Figure
4(b) shows the original GIMPLE representation; Figure 4(c) shows the GIMPLE
representation generated by SALADS. GIMPLE is a three-address representa-
tion in static single assignment form [4]. In a GIMPLE representation, temporary
variables are defined to store the intermediate values for complex expressions.
For example, in Figure 4(c), to allocate memory for the instance pointed by p,
D.2052 is temporarily defined to store the return value of malloc (line 15) and
afterwards assigned to p (line 16). In particular, we explain how GIMPLE Pass-
1 instruments the statement p->a=1. Suppose the definition of data structure
TEST is identified. First, a GIMPLE statement to invoke Initialize Record is
inserted (line 18 Figure 4(c)). Initialize Record initializes Ia as p and Ic as 0.
Also Initialize Record initializes Fs, Fo, and Ff for each field in p. Fs and Fo

are determined by the definition of TEST (line 1-7 Figure 4(a)); Fr is set as the
same with Fo; Ff is set as 0 (i.e., randomizable). Second, a GIMPLE statement is
inserted to call Update Record (line 19 Figure 4(c)). Update Record updates Ic
to be 1 and Ia to be p and uses a routine Shuffle(p) to shuffle the layout, which
are presented as step-1 to step-3 in Figure 3. The results are shown in Figure 3
after step-4. Third, a GIMPLE statement is inserted to call Offset Diff (line 20
Figure 4(c)). Offset Diff calculates difference between the after-randomization
offset and original offset (presented as step-5 in Figure 3). For instance, the off-
set difference for a in p is 8. Fourth, a GIMPLE statement is inserted to assign
the location of the randomized field to a pointer D.2058 (line 22 Figure 4(c)).
Finally, the original statement p->a=1 (line 9 Figure 4(b)) is replaced with a
new statement *D.2058=1 (line 23 Figure 4(c)).
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3.3 De-randomization Component

Data structure randomization may introduce runtime errors. For example, a
randomized data structure passed to an un-instrumented library function will
be accessed based on the original layout. It will cause program errors because
the function may access the irrelevant field in the randomized data structure.

The de-randomization component (i.e., GIMPLE Pass-2) is designed to avoid
such errors. First, the pass scans the GIMPLE representation of a program to
identify dangerous statements. A dangerous statement involves operations on
randomized data structures and such operations might cause consequent in-
consistency or crash. Second, the pass inserts a statement to invoke the de-
randomization routine before a dangerous statement. This routine will restore
the data structures involved in the dangerous statement into their original lay-
outs. The dangerous statements appear in two scenarios as follows.

Pointer involved dangerous statements. There are two types of pointer-
involved danger statements: (1) statements that cast a randomized data struc-
ture instance (or a randomized data structure pointer) X to another pointer Y,
but X and Y are of different types. Such a statement is dangerous because the
subsequent point-to-member operators over Y still access fields according to the
original layout; (2) statements that use a pointer to reference a field in a data
structure. Suppose there is a statement int *p=&z.a. When z is re-randomized
after the assignment, the DSSR program cannot inform p. Consequently, p will
point to an irrelevant field instead of a.

For the first type, the inserted de-randomization routine restores X to its
original layout and mark it as un-randomizable. For the second type, the de-
randomization routine restores the fields (e.g., a) referenced by pointers (e.g., p)
to their original locations. Also, the routine marks such fields as un-randomizable.

External and shared APIs involved dangerous statements. Statements
invoking external and shared APIs are dangerous if they pass data structure
instances as arguments. For example, when a program calls bind in GNU LIBC
with an instance of data structure sockaddr, the sockaddr instance might be
randomized. However, bind still uses the sockaddr instance based on its original
data structure layout. This will obviously lead to an execution error.

For such an API invoking statement, the inserted de-randomization routine
will restore the data structure instances that are passed as arguments to their
original layouts and mark them as un-randomizable.

3.4 Other Practical Issues

When there is a deep copy (e.g., plain assignment and memcpy) from data struc-
ture instance A to another instance B (A and B are with the same type), B shares
the identical randomized layout with A. In our design, we directly copy the ran-
domization record of A to B, except Ia and Ic.

If multiple threads access the same data structure instance, the seed of the
instance might turn into an un-synchronized state. For user space programs, we
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leverage pthread mutext lock and pthread mutex unlock to keep the execu-
tion correct. For kernel space software, the DSSR programs rely on the spinlock
interface spin lock and spin unlock to enforce synchronization.

A program might set a written protection attribute for pages that contain
data structure instances. If so, DSSR programs firstly change attributes of these
pages to make them writable and then randomize layouts of the instances.

4 Evaluation

We implement SALADS on top of gcc-4.5.0 with 11K lines of C code added.
All evaluation experiments are conducted on an Intel(R) Core(TM) i5 machine
with 4GB memory running Fedora Core Release 8 with Linux kernel version
2.6.23.1. In this section, we present the evaluation of the effectiveness and the
performance of SALADS system.

4.1 Effectiveness of DSSR Application Programs

How DSSR applications are generated. We generate DSSR applications via
using SALADS to compile open source programs, including SPECInt2000 [3],
httpd-2.0.6, openssh-2.1.1p4, and openssl-0.9.6d. In principle, we should
select security-sensitive data structures to randomize. However, we have limited
knowledge about such data structures. To be general, we randomly select 20% of
data structures to randomize in each program. In particular, determined security-
related data structures are manually added to the randomization set.

How attacks are launched. We launch two real world attacks. In the first
attack, we exploit the buffer overflow over the array key arg in a data structure
instance session (of type ssl session st) in openssl [15]. During the exploita-
tion, the attack firstly overwrites the key arg array and injects the shell codes.
Then, the attack uses the pointer field ciphers in session to calculate the ad-
dress of the shell codes. By substracting 368 from the pointer session->ciphers,
the attacker can get the starting address of the shell code. Finally, the attacker
redirects the program counter to the shell code. In the second attack, we exploit
the integer truncation bug in [14], details of which have been presented before.

We also mimic a memory content leakage attack in the experiment: we insert
a routine in each of the tested programs. The routine does two things. First,
the routine dumps the page that contains the target data structure instance,
immediately after the program receives inputs (e.g. socket packets). Second,
the routine analyzes the dumped page to locate the base address of the target
instance, based on the signature of the data structure. Signature of passwd

in openssh has been explained previously. For ssl session st, the signature
consists of 23 special fields (4 character arrays with 4 corresponding integer
lengths, 6 pointer values, and 9 integer values). In addition, the routine can
identify fields with unique features: pw uid in pw is a small integer ≤ 0xFFFF;
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Table 1. Defense results of DSSR applications

Programs CVE # Bugs Data Structure ASLR and DSLR SALADS
openssl-0.9.6d CVE-2002-0656 KEY ARG bugs [15] ssl session st ×

√

openssh-2.1.1 CVE-2001-0144 CRC-32 bug [14] passwd ×
√

key arg in session is an 8-byte array which would very likely be separated from
other fields by small values (≤ 0x18).

Effectiveness of DSSR. We compile the selected programs with static DSLR
and SALADS, respectively. During our experiment, we also enable ASLR in
the execution environments. We launch the two attacks to both static DSLR
and SALADS compiled applications. Defense results are shown in Table 1. The
results demonstrate that when memory content leakage happens, both ASLR
and static DSLR cannot defend data structure manipulation attacks. However,
SALADS is robust enough to prevent such attacks.

Looking into the details. Here we discuss the details of how SALADS defeats
the two attacks. In the attack against openssh, the memory content leakage
enables the attacker to infer the base address of pw and offset of pw uid at
the moment when the leakage happens. The attacker then manipulates the field
pw uid based on the inferred offset. However, a malicious request will trigger at
least 5 accesses to pw before it overflows the target instance. Thus the target
instance is re-randomized before being manipulated. The story is similar for the
attack against openssl: a malicious request will trigger at least 17 accesses to
session before it overwrites key arg.

4.2 Effectiveness of DSSR kernel and DSSR hypervisor

How DSSR Linux kernel and hypervisor are generated. Linux kernel-
2.6.23.1 contains 11430 data structure definitions. Randomizing all data struc-
tures would cause unacceptable overhead. In addition, we observe that many
data structures are security in-sensitive and thus, should not be randomized.
So we manually select 23 security-sensitive data structures (often used by the
rootkits) from Linux kernel-2.6.23.1.

Xen-3.2.0 with Linux kernel-2.6.18.8 contains 11983 data structure definition-
s. We select 20 data structures from Xen-3.2.0 to randomize, which are widely
used in security-sensitive source code files (e.g., mm.c). With the selected data
structures, we compile the Linux kernel-2.6.23.1 and Xen-3.2.0 with SALADS.

How attacks are launched. We launch 12 widely used rootkits, as shown
in Table 2, in the DSSR Linux kernel. These rootkits manipulate three data
structures: task struct, proc dir entry, and module. We also launch a Blue
Pill attack against Xen-3.2.0, which reads and then manipulates the vcpu data
structure with ring0 privilege. All the launched rootkits can circumvent OS level
ASLR. The rootkits circumvent static DSLR in a similar way as explained before:
speculate the layout of the target instance by referring another known instance
of the same type (e.g., proc root is a global variable of type proc dir entry).
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Table 2. Defense results of deploying DSSR kernel against rootkits

Rootkit Name Data Structure Description prevented?

hideprocess-2.6 task struct hide one process with given PID
√

kbdy-2.6 proc dir entry privilege escalation to the user when open proc file
√

adore-ng-0.56 task struct, proc dir entry, module hide one process when open proc file
√

taskigt task struct,proc dir entry privilege escalation to process when open proc file
√

enyelkm-1.3 proc dir entry, module hide module by modifying the proc read system call
√

int3hook module hide process when hijacking int 3
√

synapsys task struct,module give the root privilege to certain proess
√

cleaner-2.6 module hide the next module of the rootkit
√

linuxfu-2.6 task struct hide the process given its name
√

modhide module hide the module given its name
√

override task struct hide one process using injected code
√

rmroots task struct, module destroy static data structures to hide
√

Effectiveness of DSSR. We compile Linux kernel-2.6.23.1 and Xen-3.2.0 with
static DSLR and SALADS, respectively. First, we execute the selected rootkits
in the static DSLR kernel. These rootkits are enabled to infer the layout the
target instance. The effects caused by these rootkits are presented in column
3 of Table 2 (titled as “Description”). Second, we execute the selected rootk-
its in DSSR kernel and enable them to infer the randomized layout as well.
The experiments show two types of results: (1) the rootkit attack is prevented
and the kernel continues to work without problems (hideprocess, synapsys,
linuxfu-2.6 and override); (2) the rootkit attack causes a kernel panic (the
rootkit writes to a pointer which does not point to the location expected by the
rootkit). Third, we launch the Blue Pill attack against static DSLR Xen-3.2.0
and DSSR Xen-3.2.0 and enable it to infer the randomized layout. Experiments
show that static DSLR Xen is attacked but DSSR Xen is protected.

Looking into the details. Compared with user space programs, the kernel and
the hypervisor contains many more data structure pointers. However, the SAL-
ADS system conducts de-randomization for many pointer involved operations.
One potential issue is that many instances are de-randomized. For Linux kernel,
we calculate the fields randomization rate (the percentage of randomizable fields
in all fields) and instance randomization rate (the percentage of randomizable
instances in all instances) during booting. In Table 3, we present the results
for 17 data structures that are correlated to more operations than others. Field
randomization rate for these data structures is 82.2% on average and instance
randomization rate for these data structures is 80.9% on average.

4.3 Performance overhead

Influence of threshold Wm on performance overhead. In SALADS, we
set up a threshold Wm to control the times of accesses between two successive
randomization. In the first experiment, we use SPECInt2000 benchmark5 to test
how Wm specifically affects the performance overhead introduced by SALADS.
All data structures in these programs are randomized. Wm is set to vary from
1 to 10 and for each value, we measure the average performance overhead. The

5 We excluded three programs gcc, vortex, and eon in SPECInt2000 since these pro-
grams cannot be compiled with gcc-4.5.0.
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Table 3. Randomization Rate of Data structure in Linux kernel-2.6.23.1 (Size: the
memory size of the data structure (bytes); # Operations: the total DSSR statements
inserted to handle operations on the data structure; Ft: the total number of fields in
the data structure; Fr: the number of fields that can be randomized; It: the number of
instances that are used; Ir: the number of randomized instances).

Num Name Size # Operations Ft Fr γ=
Fr

Ft

(%) It Ir δ=
Ir

It

(%)

1 sk buff 180 24770 44 42 95.5 1285 1086 84.5

2 net device 1280 19918 100 91 91.0 76 72 96.1

3 list head 8 15595 2 2 100 197391 160347 81.2

4 task struct 1552 14171 130 97 74.6 386 386 100

5 inode 336 13779 44 25 56.8 5318 4772 89.7

6 device 328 12425 29 18 62.1 393 343 87.3

7 super block 384 8970 38 25 65.8 23 21 91.3

8 pci dev 996 7662 43 41 95.3 37 29 78.4

9 socket 40 5111 8 8 100 450 398 88.4

10 Scsi Host 700 5050 59 56 94.9 40 34 85.0

11 dentry 132 4473 18 11 61.1 5408 5120 94.6

12 urb 104 4452 25 18 72.0 17 17 100

13 scsi cmnd 304 4401 29 26 89.7 72 66 91.7

14 buffer head 56 4226 12 9 75.0 8052 5155 64.0

15 file 132 4206 17 10 58.8 3436 2056 59.8

16 net device stats 92 4105 23 21 91.3 9 7 77.7

17 sock 364 3846 56 46 82.1 764 587 76.8

normalized results are shown in Figure 5. It can be observed that the perfor-
mance overhead decreases as Wm increases. When Wm grows from 4 to 5, the
performance overhead reduces sharply and after that, the performance overhead
does not drop obviously. So we set Wm to be 5 by default. All the following
experiments are done with Wm = 5.

To evaluate the performance overhead introduced by SALADS, we test a
variety of programs, including SPECInt2000, httpd-2.0.6, openssh-2.1.1p4
and openssl-0.9.6d, Linux kernel 2.6.23.1 and Xen-3.2.0.
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Fig. 5. Effects of Wm on performance

To evaluate user space appli-
cations, for testing SPECInt2000,
we leverage the official benchmark;
for testing httpd, we use apache
benchmark; for testing opensshl,
we use openssl speed [2]; for
testing openssh, we upload 1.5G-
B test-files using scp [2] within
1000 times. The evaluation result-
s are shown in Figure 6. The per-
formance overhead introduced by
SALADS ranges from from 0.2% to
23.5% on average. SALADS intro-
duces higher performance overhead
in gzip, gap and twolf. We find that the three programs leverage plenty of data
structures to encapsulate data objects (e.g. compressed data, interpret dictio-
nary word, and simulate objects) and frequently operate on these data struc-
tures. Consequently, DSSR statements are continuously executed in the three
programs, which would cause high performance overhead.

For DSSR Linux kernel and DSSR Xen-3.2.0, we use the Lmbench [26] to
evaluate the performance overhead. Specifically, we measure the overhead with
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the bandwidth and the latency benchmarks. By only randomizing the selected
data structures, DSSR Linux kernel introduces 6.7% to 28.8% (16.7% on aver-
age) runtime overhead, and DSSR Xen-3.2.0 introduces 0.1% to 14.8% (4.5% on
average) runtime overhead. Details are presented in Table 4 in Appendix.

4.4 Memory Overhead

We measure the physical memories used by a set of DSSR programs and the
corresponding original programs, at randomly selected time points during 1000
runs. As shown in Figure 7, the memory overhead introduced by SALADS to
DSSR programs ranged from 0.7% (openssh-2.1.1p4) to 6.1% (twolf) on av-
erage. To measure memory overhead in DSSR kernels, we use the dmesg to get
the memory usage of the Linux kernel after it is loaded. Both of the original
Linux kernel and the DSSR Linux kernel are booted for three times to get the
average memory usage. As shown in Figure 7, the DSSR Linux kernel introduces
8.6% memory overhead on average. We use the same method for Linux kernel
to measure the memory overhead introduced by DSSR Xen-3.2.0. As shown in
Figure 7, DSSR Xen-3.2.0 introduces memory overhead by 4.2% on average.

5 Discussion

5.1 Analysis of Effectiveness

Our threat model describes a simplified version of data structure manipulation
attacks, which only involves one data structure and one specific field. In practice,
a data structure manipulation attack often involves multiple data structures and
multiple fields. For instance, the rootkit taskigt needs to read/manipulate
uid, gid, euid, egid in task struct and read proc in proc dir entry, for a
successful attack.

Here we discuss the difficulty introduced by SALADS to a data structure
manipulation attack (suppose the original ASLR [32] is deployed). For generality,
we assume (1) the attack needs to explore n data structure instances and the ith

instance contains li fields; (2) the attack needs to read/write mi fields in the ith

instance; (3) the attack attempts to bypass the diversification defenses by brute
force; (4) accesses to these instances are completed via one request. Attacks with
multiple requests are separated into different attacks.

First, if the attack is against an application and no memory content leakage
happens, the attack needs to crack both ASLR and SALADS. To bypass ASLR
to refer the base addresses of the n data structures, the attack needs to make
at most 219 × 3 probes in total, because (1) the data structures may exist in
randomized segment of heap, stack, or data; (2) a correct guess of one data
structure in a single segment will reveal all other data structures in the same
segment. Suppose ASLR has been bypassed and the base addresses of all the
instances have been identified. To bypass SALADS to manipulate the correct
fields, the attack needs to conduct

∏n
i=1

(
li
mi

)
probes. Such a conclusion is based
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Fig. 7. Memory Overhead

on following facts: (1) all target fields in one single instance are to be accessed in
one request, so the attack needs to guess all mi target fields in the ith instance
in one probe; (2) all the n instances are to be accessed in one request, which
should be probed in one attempt. Summarily, SALADS complements ASLR
to complicate data structure manipulation attacks. For instance, when n = 2,
l1 = 19, l2 = 130, m1 = 1, and m2 = 4, the expected number of probes to crack
SALADS is more than 227 (the values are based on the taskigt rootkit).

Second, if the attack is against an application with memory content leakage
or conducted by a rootkit, ASLR (and the static DSLR) is not effective. However,
SALADS still works, which has been explained previously. Similarly, the attack
needs to make

∏n
i=1

(
li
mi

)
probes to bypass SALADS.

5.2 Limitations

In this section, we discuss the limitations of SALADS. First, our design does
not explicitly protect the randomization records. Suppose an attacker can read
arbitrary memories, including the randomization records. With the records, the
attacker can recover the randomized layout. This is a common problem for com-
piler based defenses, such as Stackguard [13], and G-Free [27]. However, different
from existing works, the leaked seeds might be invalid when the attack uses it.
The time costs by memory content leakage varies from seconds [33] to weeks,
when fine-grained ASLR protection is deployed. Within such a time window, a
DSSR program might update the record for multiple times. To protect the ran-
domization records, one possible solution is to adopt the key protection method
proposed by Harrison [19]. This technique suggests introducing access control to
prevent external code from accessing the key.

Second, an attacker may leverage code-reuse techniques to bypass SALADS.
For example, the attacker could reuse the routines (e.g., Update Record) to get
the memory layout of a data structure. Fortunately, code reuse can be effectively
handled by existing techniques, such as fine-grained ASLR for instruction areas
[23,28,38,20,17] and control flow integrity (CFI) enforcement [5,37,41,42,16].

Third, it is hard to handle the balance between security and efficiency. To
obtain the strongest protection, we should randomize all data structures, which,
however, would introduce high performance overhead. In our current implemen-
tation, we randomize a subset of all data structures, including security-sensitive
data structures. Common security-sensitive data structures include those con-
tains authentication information or function pointers. To handle this limitation,
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we provide users with a white list which contains data structures to be random-
ized. The users can add security-sensitive data structures into this list. In the
near future, we plan to improve our current implementation to randomize more
data structures and reduce the overhead.

6 Related Work

Plenty of techniques have been proposed to achieve address space randomization
(ASR). These techniques introduce diversification to programs at different gran-
ularity [24], including segment level [36,9], page level [6], function level [23], basic
block level [28], instruction level [38,20], and memory objects level [18,25,34,40].

In particular, Giuffrida et al. [18] propose a fine-grained OS-level live random-
ization technique, including data structure randomization. However, it has sev-
eral limitations. First, their technique needs to heavily modify the microkernel-
based OS; our technique can be directly applied to the targets with light-weight
instrumentation. Second, their technique requires to separate a kernel into iso-
lated components, which violates the design principles of modern kernels. Third,
it cannot achieve live randomization in the microkernel; whereas our technique
can be generically applied to applications, OS kernel and hypervisor code.

Static DSLR [25,34] is proposed to prevent data structure manipulation at-
tacks, via modifying the definition of a data structure to reorder the fields.
However, static DSLR has several limitations. First, the layout randomized by
static DSLR is determined at compilation time. Second, static DSLR requires
manual efforts to determine which data structure can be randomized. Xin et al.
[40] extend static DSLR and propose to use a constraint set to select randomiz-
able data structures. But their technique cannot handle nested data structures
and ignores all data structures associated with pointer operations.

7 Conclusion

In this paper, we present SALADS, a system that automatically translates a
program to a DSSR program. At runtime, a DSSR program adaptively ran-
domizes the layout of each security-sensitive data structure independently. The
randomizability of a data structure instance is automatically determined by the
DSSR program. Experiments demonstrate both high effectiveness and reasonable
performance when applying SALADS to defense against data structure manipu-
lation attacks. As a technique to introduce artificial diversification, SALADS is
robust enough to protect programs when memory content leakage happens and
practically applicable to protect OS kernels and hypervisors against rootkits.
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30. J. Seibert, H. Okhravi, and E. Söderström. Information leaks without memory
disclosures:remote side channel attacks on diversified code. In ACM Conference
on Computer and Communications Security (CCS ’14), 2014.

31. F. J. Sern. Cve-2012-0769, the case of the perfect info leak. 2012. http://zhodiac.
hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf.

32. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the
effectiveness of address-space randomization. In ACM conference on Computer
and communications security (CCS ’04), 2004.

33. K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi.
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In IEEE Symposium on Security and Privacy (Oakland ’13), 2013.

34. D. M. Stanley, D. Xu, and E. H. Spafford. Improved kernel security through mem-
ory layout randomization. In International Performance Computing and Commu-
nications Conference (IPCCC ’13), 2013.

35. R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Wal-
ter. Breaking the memory secrecy assumption. In European Workshop on System
Security (EUROSEC ’09), 2009.

36. P. Team. Pax address space layout randomization (aslr). 2003. http://pax.

grsecurity.net/docs/aslr.txt.
37. Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime

hypervisor control-flow integrity. In IEEE Symposium on Security and Privacy
(Oakland ’10), 2010.

38. R. Wartell, V. Mohan, K. Hamlen, and Z. Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In ACM Conference on Computer
and Communications Security (CCS ’12), 2012.

http://www.greyhathacker.net/?p=585
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt


A Practical Approach for Adaptive Data Structure Layout Randomization 19

39. Wikipedia. Data structure alignment. 2014. http://en.wikipedia.org/wiki/

Data_structure_alignment.
40. Z. Xin, H. Chen, H. Han, B. Mao, and L. Xie. Misleading malware similarities

analysis by automatic data structure obfuscation. In International Conference on
Information security (ISC ’10), 2010.

41. C. Zhang, T. Wei, Z. Chen, L. Duan, S. McCamant, L. Szekeres, D. Song, and
W. Zou. Practical control flow integrity and randomization for binary executables.
In IEEE Symposium on Security and Privacy (Oakland ’13), 2013.

42. M. Zhang and R. Sekar. Control flow integrity for cots binaries. In USENIX
Security Symposium (Security ’13), 2013.

43. Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-vm side channels
and their use to extract private keys. In ACM Conference on Computer and
Communications Security (CCS ’12), 2012.

A Details of Lmbench Results

Table 4. Lmbench results

Latency
Linux kernel-2.6.23.1 Linux kernel-2.6.18.8-xen0

orig (ms) r(ms) O(%) orig (ms) r(ms) O(%)

Simple syscall 0.1559 0.1791 14.9 0.2920 0.2949 1.0
Simple read 0.2239 0.2864 27.9 0.4021 0. 4082 1.5
Simple write 0.1972 0.2539 28.8 0.3658 0.3699 1.1

Simple open/close 1.8732 2.3089 23.2 2.7081 2.7323 0.9
Process fork+exit 60.2857 70.3026 16.6 342.8125 386.5949 12.8

Select on 10 fds 0.4458 0.5069 13.7 0.6874 0.6884 0.1
Select on 100 fds 1.3019 1.5419 18.4 1.7559 1.7688 0.7
Protection fault 0.2289 0.2497 9.1 0.5997 0.6009 0.2

Pipe 5.4670 5.8371 6.7 14.2375 16.3477 14.8
AU UNIX sock stream 5.9704 7.0496 18.1 13.1883 14.6609 11.2

Bandwidth orig (MB/s) r (MB/s) O (%) orig (MB/s) r (MB/s) O (%)
File I/O 44.71 38.18 17.1 19.30 18.21 6.0

Mmap I/O 7423.26 6671.53 11.2 3023.09 2896.42 4.4
Mem rd 8359.75 7523.35 11.1 3378.98 3245.22 4.1

Table 4 lists the detailed results of testing DSSR Linux kernel (2nd-4th

columns) and DSSR Xen-3.2.0 (5th-7th columns) with Lmbench. In particularly,
we evaluate the performance overhead introduced by SALADS with two met-
rics: system latency and bandwidth. For DSSR Linux kernel, file operations
(e.g., open/close) have higher performance overhead. Based on our observations,
this is possibly because the file-related data structures (e.g., inode) contains
many nested definitions which require more DSSR statements to complete the
randomization. For DSSR Xen, the randomization mainly affects the local com-
munications (e.g., Pipe) and process-related operations (e.g., process fork). This
is probably because more DSSR statements at these points will be executed to
access the privileged system components (e.g., MMU, I/O peripherals) and cause
traps into the VMM.
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