Infinitely Many Composite NSW Numbers:

An Inductive Proof

January 22, 2003

1 Motivation

The NSW numbers were introduced approximately 20 years ago \cite{3} in connection with the order of certain simple groups. These are the numbers f_n which satisfy the recurrence

$$f_{n+1} = 6f_n - f_{n-1}$$ \hspace{1cm} (1)

with initial conditions $f_1 = 1$ and $f_2 = 7$.

In recent years, these numbers have been studied from a variety of perspectives \cite{1}, \cite{2}. Moreover, the author, in collaboration with Hugh Williams, has proven that there are infinitely many composite NSW numbers \cite{4} as requested in \cite{1}. The goal of this note is to provide a purely inductive proof of the main theorem in \cite{4}. We restate it here.
Theorem 1.1. For all $m \geq 1$ and all $n \geq 0$, $f_m \mid f_{(2m-1)n+m}$.

2 The Necessary Tools

To prove Theorem 1.1 we need to develop a few key tools.

Proposition 2.1. For all integers $a, b \geq 0$, and for all $1 \leq j \leq a+b-2$, we have

$$f_{a+b} = s_{j+1}f_{a+b-j} - s_jf_{a+b-j-1}$$ \hspace{1cm} (2)

where $s_j = \sum_{i=1}^{j}(-1)^{i+j}f_i$.

Proof. We prove this proposition using induction on j. First, when $j = 1$, the right hand side of (2) is $(f_2 - f_1)f_{a+b-1} - f_1f_{a+b-2}$ or $6f_{a+b-1} - f_{a+b-2}$, which equals f_{a+b} thanks to (1).

Next, we assume

$$f_{a+b} = s_{j+1}f_{a+b-j} - s_jf_{a+b-j-1}$$

for $j < a + b - 2$. Thus, since $f_{a+b-j} = 6f_{a+b-j-1} - f_{a+b-j-2}$, we have

$$f_{a+b} = s_{j+1}(6f_{a+b-j-1} - f_{a+b-j-2}) - s_jf_{a+b-j-1}$$

$$= (6s_{j+1} - s_j)f_{a+b-j-1} - s_{j+1}f_{a+b-j-2}.$$

Then we note that

$$6s_{j+1} - s_j = 6 \sum_{i=1}^{j+1}(-1)^{i+j+1}f_i - \sum_{i=1}^{j}(-1)^{i+j}f_i$$

$$= 6(-1)^{j+2}f_1 + 6 \sum_{i=2}^{j+1}(-1)^{i+j+1}f_i - \sum_{i=1}^{j}(-1)^{i+j}f_i$$

$$= 6(-1)^{j+2}f_1 + 6 \sum_{i=2}^{j+1}(-1)^{i+j+1}f_i - \sum_{i=1}^{j}(-1)^{i+j}f_i$$
\begin{align*}
&= 6(-1)^{j+2}f_1 + 6 \sum_{i=1}^{j} (-1)^{i+j+2}f_{i+1} - \sum_{i=1}^{j} (-1)^{i+j}f_i \\
&= (f_2 - f_1)(-1)^{j+2} + \sum_{i=1}^{j} (-1)^{i+j+2}(6f_{i+1} - f_i) \\
&= (f_2 - f_1)(-1)^{j+2} + \sum_{i=1}^{j} (-1)^{i+j+2}f_{i+2} \text{ by (1)} \\
&= (f_2 - f_1)(-1)^{j+2} + \sum_{i=3}^{j+2} (-1)^{i+j}f_i \\
&= \sum_{i=1}^{j+2} (-1)^{i+j}f_i \\
&= s_{j+2}.
\end{align*}

Therefore, we have

\begin{align*}
f_{a+b} &= (6s_{j+1} - s_j)f_{a+b-j-1} - s_{j+1}f_{a+b-j-2} \\
&= s_{j+2}f_{a+b-j-1} - s_{j+1}f_{a+b-j-2},
\end{align*}

which completes the proof of Proposition 2.1 \hfill \Box

Proposition 2.2. For all \(m \geq 1\) and for all \(1 \leq c \leq m-1\), \(f_m \mid f_{m+c} + f_{m-c}\).

Proof. For \(c = 1\), we know from (1) that \(6f_m = f_{m+1} + f_{m-1}\), so that \(f_m \mid f_{m+1} + f_{m-1}\). Next, we assume \(f_m \mid f_{m+c} + f_{m-c}\) for \(1 \leq c \leq d\) for some value \(d < m - 1\). Since

\[f_{m+d+1} = 6f_{m+d} - f_{m+d-1}\] and \(f_{m-d-1} = 6f_{m-d} - f_{m-d+1}\),

we know

\[f_{m+d+1} + f_{m-(d+1)} = 6f_{m+d} - f_{m+d-1} + 6f_{m-d} - f_{m-d+1}\]
\[6(f_{m+d} + f_{m-d}) - (f_{m+d-1} + f_{m-(d-1)}) . \]

By the induction hypothesis, the result follows. \qed

Proposition 2.3. For all \(m \geq 1 \), \(f_m \mid s_{2m-1} \).

Proof. We see that

\[
s_{2m-1} = \sum_{i=1}^{2m-1} (-1)^{i-1}f_i = f_1 - f_2 + f_3 - \ldots + (-1)^{m-1}f_m + \ldots + f_{2m-1}.
\]

Notice that this sum is centered about \(f_m \), which divides itself, and that the rest of the terms can be paired in such a way that Proposition 2.2 can be applied easily. \qed

We are now ready to prove Theorem 1.1

Proof. When \(n = 0 \), the result is clear. Next, assume \(f_m \mid f_{(2m-1)n+m} \) or \(f_m \mid f_{2mn-n+m} \). We want to prove

\[f_m \mid f_{(2m-1)(n+1)+m} \text{ or } f_m \mid f_{2mn-n+m+(2m-1)}. \]

Using Proposition 2.1 with \(a = 2mn-n+m, b = 2m-1 \), and \(j = 2m-2 \), we have

\[f_{2mn-n+m+(2m-1)} = s_{2m-1}f_{2mn-n+m+1} - s_{2m-2}f_{2mn-n+m}. \]

From Proposition 2.3 we know \(f_m \mid s_{2m-1} \), and from the induction hypothesis, \(f_m \mid f_{2mn-n+m} \). The result follows. \qed

4
References

[1] Barcucci, E., Brunetti, S., Del Lungo, A., and Del Ristoro, F., A combinatorial interpretation of the recurrence $f_{n+1} = 6f_n - f_{n-1}$,

2000 Mathematics Subject Classification. 11B37, 11B83

keywords: NSW numbers, recurrence relation