Problem 1

Let X be a topological space. Let $K(X)$ be the set of compact subsets of X. The **Vietoris topology** on $K(X)$ is the topology generated by the following sets.

$$\{K \in K(X): K \cap U \neq \emptyset\}$$

$$\{K \in K(X): K \subseteq U\}$$

The Vietoris topology is an example of a *hit-and-miss* topology, because the basic neighborhoods consist of all those compact sets that *hit* a given finite number of open sets and *miss* a given closed set.

(a) Show that \emptyset is isolated in $K(X)$ with the Vietoris topology.

Now assume d is a metric on X with $d \leq 1$. Define the **Hausdorff metric** d_H on $K(X)$ as follows.

$$d_H(K, L) = \inf\{\epsilon > 0: K \subseteq L_{\epsilon} \& L \subseteq K_{\epsilon}\},$$

where for a subset $Y \subseteq X$,

$$Y_{\epsilon} = \{z \in X: d(z, Y) = \inf\{d(z, y): y \in Y\} < \epsilon\}.$$

(b) Show that the Hausdorff metric is compatible with the Vietoris topology.

One can show that if X is Polish, so is $K(X)$, and if X is compact, so is $K(X)$.

Finally, assume X is Polish.

(c) Show that

$$K_p = \{K \in K(X): K \text{ is perfect}\}$$

is G_δ in $K(X)$.

(d) Show that if X is perfect, then $K_p(X)$ is dense in $K(X)$. Conclude that $K_p(X)$ is comeager in $K(X)$, that is, from the point of view of Baire category, most compact subsets of X are perfect.

Problem 2

Show that the non-measurable Vitali set does not have the Baire property.

Problem 3

Show that DC implies AC_ω.