Sample Midterm 2 for MATH 185

Problem 1

If the following statements are true, answer "TRUE". If not, give a brief explanation why.

(1) If \(f(z) \) is analytic on a domain \(D \subseteq \mathbb{C} \), and \(\alpha \) is a closed path in \(D \), then \(\int_{\alpha} f(z)dz = 0 \).

Solution. FALSE. If \(D \) is not elementary, this is not necessarily true, e.g. \(1/z \) on \(D = \mathbb{C} \).

(2) If \(f \) is analytic on the unit disk \(E = \{ z : |z| < 1 \} \), then there exists an \(a \in E \) such that \(|f(a)| \geq |f(0)| \).

Solution. TRUE. If \(f \) is constant, this is true. If \(f \) is non-constant, by the maximal modulus principle, \(f \) cannot take a maximal modulus on \(E \), in particular not in 0.

(3) If \(\sum_n a_n z^n \) has radius of convergence \(R \), then \(\sum_n \text{Re}(a_n) z^n \) has radius of convergence \(\geq R \).

Solution. TRUE. Since \(|\text{Re}(a_n)| \leq |a_n| \), so \(\limsup_n \sqrt[n]{|\text{Re}(a_n)|} \leq \limsup_n \sqrt[n]{|a_n|} \).

(4) If \(f \) and \(g \) are analytic on \(D \), and if they agree on a non-empty set \(S \) which is closed in \(D \), then \(f = g \) in \(D \).

Solution. FALSE. \(S \) might not have an accumulation point in \(D \). E.g. \(D = \mathbb{C}, S = \{0\} \). Then \(f(z) = z \) and \(f(z) = z^2 \) agree on \(S \), but are not identical on \(D \).

Problem 2

Compute the integral

\[\oint_{|z|=3} \frac{\cos(\pi z)}{z^2 - 1}. \]

Solution. A partial fraction decomposition yields

\[\frac{\cos(\pi z)}{z^2 - 1} = \frac{1}{2} \left(\frac{\cos(\pi z)}{z - 1} - \frac{\cos(\pi z)}{z + 1} \right). \]

The Cauchy integral theorem yields

\[\oint_{|z|=3} \frac{\cos(\pi z)}{z - 1} = 2\pi i \cos(\pi) \]

and

\[\oint_{|z|=3} \frac{\cos(\pi z)}{z + 1} = 2\pi i \cos(-\pi) = 2\pi i \cos(\pi), \]

so the value of the integral is 0.
Problem 3
Let \(f : \mathbb{C} \to \mathbb{C} \) be a non-constant, entire function. Show that \(f(\mathbb{C}) \) is dense in \(\mathbb{C} \), i.e. for every \(a \in \mathbb{C} \) and for every \(\varepsilon > 0 \), \(U_\varepsilon(a) \) contains a point from \(f(\mathbb{C}) \).

Solution. Let \(a \in \mathbb{C} \). Assume there exists an \(\varepsilon > 0 \) such that \(U_\varepsilon(a) \cap f(\mathbb{C}) = \emptyset \). Consider the function \(g(z) = 1/(f(z) - a) \). Obviously, \(g \) is entire. Since \(|f(z) - a| \geq \varepsilon \) for all \(z \in \mathbb{C} \), we have \(|g(z)| \leq 1/\varepsilon \), so \(g \) is bounded, hence constant by Liouville’s Thm. Suppose \(g \equiv c, c \in \mathbb{C} \). But then \(f(z) = \frac{1}{c} - a \) is constant, too – contradiction. ■

Problem 4
Expand \(\frac{1}{z^2 - 1} \) in a Taylor series around \(z = 0 \) and determine the radius of convergence.

Solution. Obviously,
\[
\frac{1}{z^2 - 1} = -\frac{1}{1 - z^2} = -\sum_{n=0}^{\infty} z^{2n}.
\]
The radius of convergence is 1. ■