By contracting quantifiers and possibly adding “dummy” variables and expressions like $x_i = x_i$, we can assume that a given formula φ is of the form

\[(0.1)\quad \exists x_1 \forall x_2 \ldots Q x_r \psi(\bar{y}, x_1, \ldots, x_r)\]

or

\[(0.2)\quad \forall x_1 \exists x_2 \ldots Q x_r \psi(\bar{y}, x_1, \ldots, x_r),\]

where Q is either \exists or \forall, and ψ is quantifier-free. In the following, we focus on the form given in (0.1). The argument for the other form is similar.

With any $\varphi(\bar{y})$ in prenex normal form (0.1) we associate a Δ_0 formula $\varphi^*(\bar{y}, z_1, \ldots, z_r)$ given as

$$\exists x_1 < z_1 \forall x_2 < z_2 \ldots \exists x_r < z_r \psi(\bar{y}, x_1, \ldots, x_r, z_1, z_2, \ldots, z_r).$$

Claim: For any formula φ in prenex normal form, for any $\bar{a} \in N$, and any $i_0 < i_1 < i_2 < \ldots < i_r$ with $\bar{a} < b_{i_0}$,

\[(0.3)\quad N \models \varphi[\bar{a}] \iff M \models \varphi[\bar{a}, b_{i_1}, \ldots, b_{i_r}].\]

The claim is proved by induction on the formula length (see also Lemma 4.47, where this technique was first described). If φ has no quantifiers at all, the claim is clear. So assume now $\varphi(\bar{y})$ is as in (0.1) with $r \geq 1$. Then the claim is that $\varphi[\bar{a}]$ holds in N if and only if

$$\exists x_1 < b_{i_1} \forall x_2 < b_{i_2} \ldots Q x_r < b_{i_r} \psi(\bar{a}, x_1, \ldots, x_r)$$

holds in M.\(^1\)

The formula $\varphi^*(\bar{y}, z_1, \ldots, z_r)$ is

$$\exists x_1 < z_1 \forall x_2 < z_2 \ldots \exists x_r < z_r \psi(\bar{y}, x_1, \ldots, x_r, z_1, z_2, \ldots, z_r).$$

Let $\theta(\bar{y}, x_1)$ be

$$\forall x_2 \ldots Q x_r \psi(\bar{y}, x_1, \ldots, x_r),$$

so $\varphi(\bar{y}) = \exists x_1 \theta(\bar{y}, x_1)$. As θ is a shorter formula, by inductive hypothesis the claim has already been verified for θ.

\(^1\)The notation in the preceding formula is, of course, a little sloppy, as the b_i and \bar{a} are not variables but elements of the structure over which we interpret. But we feel this notation improves readability.
Let \(\bar{a} \in N \) and assume \(i_0 < i_1 < \ldots < i_r \) are such that \(\bar{a} < b_{i_0} \), \(\varphi[\bar{a}] \) holds in \(N \) iff there exists a \(c \in N \) such that \(\theta[\bar{a}, c] \) holds in \(N \). Pick \(j_1 < j_2 < \ldots < j_r \) such that \(i_0 < j_1 \) and \(c < b_{j_1} \). By inductive hypothesis,

\[
N \models \theta[\bar{a}, c] \quad \text{iff} \quad M \models \theta^*[\bar{a}, c, b_{j_2}, \ldots, b_{j_r}].
\]

If we write it out, the expression on the right is

\[
M \models \forall x_2 < b_{j_2} \ldots Q x_r < b_{j_r} \, \psi(\bar{a}, c, x_2, \ldots, x_r).
\]

By choice of \(b_1 \), this is equivalent to

\[
M \models \exists x_1 < b_{j_1} \, \forall x_2 < b_{j_2} \ldots Q x_r < b_{j_r} \, \psi(\bar{a}, x_1, \ldots, x_r),
\]

in other words, it is equivalent to

\[
M \models \varphi^*[\bar{a}, b_{j_1}, \ldots, b_{j_r}].
\]

As \(i_0 < j_1 \) and the \((b_i)\) are diagonal indiscernibles for all \(\Delta_0 \) formulas in \(M \), the last expression is equivalent to

\[
M \models \varphi^*[\bar{a}, b_{i_0}, \ldots, b_{i_r}],
\]

which proofs the claim.

We can finally show that \(N \) satisfies induction. Recall that (Ind) is equivalent to the least number principle (LNP), as we saw in Section ???. Suppose \(N \models \varphi[a, \bar{c}] \), where \(\varphi(v, \bar{w}) \) is given in prenex normal form as

\[
\exists x_1 \forall x_2 \ldots Q x_n \, \psi(v, \bar{w}, \bar{x}), \quad \text{with } \psi \text{ quantifier free.}
\]

As before, we choose \(i_0 \) such that \(a, \bar{c} < b_{i_0} \). We can apply property (0.3) established in the Claim above and obtain the equivalence

\[
N \models \varphi[a, \bar{c}] \quad \text{iff} \quad M \models \exists x_1 < b_{i_0+1} \forall x_2 < b_{i_0+2} \ldots Q x_n < b_{i_0+n} \, \psi(a, \bar{c}, \bar{x}).
\]

Since induction (and hence LNP) holds in \(M \), there exists a least \(\hat{a} < b_{i_0} \) such that

\[
M \models \exists x_1 < b_{i_0+1} \forall x_2 < b_{i_0+2} \ldots Q x_n < b_{i_0+n} \, \psi(\hat{a}, \bar{c}, \bar{x}).
\]

By the definition of \(N \), the existence of \(\hat{a} \in N \), and the equivalence above, it follows that \(N \models \varphi[\hat{a}, \bar{c}] \). Finally, \(\hat{a} \) has to be the smallest witness to \(\varphi \) in \(N \), because any smaller witness would also be a smaller witness in \(M \). This concludes the proof of Proposition 4.46.