Borel Normality, Automata, and Complexity

Wolfgang Merkle and Jan Reimann

Institut für Informatik
Universität Heidelberg
The Quest for Randomness

• Intuition: An infinite sequence of fair coin tosses (H/T) will produce

\[H \text{ with an asymptotic frequency of } \frac{1}{2}. \]

(*)

• Measure Theory: The law of large numbers asserts the set of sequences satisfying (*) has measure one with respect to the uniform Bernoulli measure (Lebesgue measure).

• Collectives: Von Mises tried to base probability on individual objects. Probabilities could be assigned by studying a single instance in a Collective (Kollektiv).

(“First the collective, then the probability.”)
Von Mises’ Collectives

Von Mises gave two ’axioms’ for collectives:

1. The asymptotic frequency of occurrences of H in the collective equals 1/2.

2. Property (1) persists for any subsequence of outcomes derived from the collective by an admissible place selection rule.

Problem: What is an admissible selection rule?

- Admissible: Select all even/odd/prime/... positions.
- Not admissible: Given a sequence H T H T T H..., select all positions where H occurs.
Selection Rules

How to select a subsequence from a given sequence $A \in \{0, 1\}^\infty$?

- **Oblivious selection rule**: sequence $S \in \{0, 1\}^\infty$. Subsequence $B = A / S$ obtained: all the bits $A(i)$ with $S(i) = 1$.

- **(General) Selection rule**: language $L \subseteq \{0, 1\}^*$. Subsequence $B = A / L$ obtained: the bits $A(i)$ such that the prefix $A(0) \ldots A(i-1)$ is in L.

VIC 2004 – p.4/26
Stochasticity

- Church proposed to admit only computable selection rules.
- This lead to the study of stochastic sequences. (Church, Wald, Kolmogorov, Loveland, . . .)
- Definition: A sequence $S \in \{0, 1\}^\infty$ is (Church-) stochastic if
 $$\lim_{n \to \infty} \frac{\#_1(A/L \upharpoonright n)}{n} = \frac{1}{2}$$
 for any computable language L.
- Note that $L = \{0, 1\}^*$ is admissible, hence every stochastic sequence has limiting frequency $1/2$.
Normal Sequences

A sequence \(N \in \{0, 1\}^\infty \) is normal if any word \(w \) of length \(n \) appears as a subword of \(N \) with frequency \(2^{-n} \).

More formally, for every \(w \in \{0, 1\}^k \), it holds that

\[
\lim_{n \to \infty} \frac{\#_w(N \upharpoonright n)}{n} = \frac{1}{2^{-k}}
\]

where

\[
\frac{\#_w(N \upharpoonright n)}{n} \overset{\text{def}}{=} \frac{|\{i \leq n - k : N \upharpoonright i...i+k-1 = w\}|}{n}.
\]
Facts about Normality

• **Borel**: Almost every sequence is normal (with respect to Lebesgue measure).

• Normality is not base-invariant (**Cassels**).

• Few explicit normal sequences are known:
 ◦ **Champernowne** (base 10): 1234567891011121314…
 ◦ **Copeland-Erdös** (base 10): 23571113171923293137…

• Many open questions, e.g.: Is π normal?
Normal Sequences as Collectives

- **Obvious:** Not all normal sequences are stochastic. (Can be algorithmically quite easy, e.g. Champernowne's sequence)

- **Question:** Which selection rules do preserve normality?

- For **oblivious selection rules:** Kamae gave a complete characterization in terms of measures generated by sequences under shift map.
Oblivious Selection Rules

• Let T be the **shift map**, transforming a sequence $A = A(0)A(1)A(2)\ldots$ into another sequence by cutting off the first bit, i.e. $T(A) = A(1)A(2)A(3)\ldots$.

• Given a sequence A, δ_A denotes the **Dirac measure** induced by A, that is, for any set B of sequences,

$$
\delta_A(B) = \begin{cases}
1 & \text{if } A \in B, \\
0 & \text{otherwise}.
\end{cases}
$$
Theorem: [Kamae, 1973] An oblivious selection rule S preserves normality if and only if S is completely deterministic, that is, any cluster point (in the weak topology) of the measures $\mu_n = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{T^i(s)}$ has entropy 0.

Note that if a sequence A is normal, then any cluster point of the measures μ_n is the uniform $(1/2, 1/2)$-Bernoulli measure, which has entropy 1.
Oblivious Selection Rules

• **Example** of a completely deterministic sequence: For any real $\alpha > 1$, take the characteristic sequence of the set

$$\{[j\alpha] : j \geq 1\}.$$

• It follows that there are uncountably many completely deterministic sequences, hence there are many that are quite complicated, from an algorithmic point of view.

• **Sturmian trajectories**: Symbolic coding of irrational rotations of the circle.

• **Theorem**: Every Turing degree contains a Sturmian trajectory.
Normality and Finite Automata

- For general selection rules: Fundamental result by Agafonoff [1968], Schnorr and Stimm [1972], and Kamae and Weiss [1975].

- **Theorem**: If L is regular, then L preserves normality.

- More automata-theoretic style proofs were given by O’Connor [1988] and Broglio and Liardet [1992]

- Uses an ergodic feature of finite automata.
Kamae and Weiss [1975] asked if normality is preserved by larger classes of languages, too (e.g. context-free languages).

Answer: If larger, then not much!

By varying Champernowne's construction, we give two counterexamples:

1. A normal sequence not preserved by a deterministic one-counter language (accepted by a deterministic pushdown automata with unary stack alphabet).
2. A normal sequence that is not preserved by a linear language (slightly more complicated).
Theorem: There exists a deterministic one-counter language L and a normal sequence \tilde{N} such that the sequence $\tilde{N}/_L$ selected from \tilde{N} by L is infinite and constant.
Constructing \tilde{N}

- For any n, let

$$v_n = 0^n 0^{n-1}1 0^{n-2}10 \ldots 1^n$$

be the word that is obtained by concatenating all words of length n in lexicographic order.

- **Definition:** A set $W \subseteq \{0, 1\}^*$ of words is normal in the limit if for any nonempty word u and any $\varepsilon > 0$ for all but finitely many words w in W,

$$\frac{1}{2|u|} - \varepsilon < \frac{\#_u(w)}{|w|} < \frac{1}{2|u|} + \varepsilon.$$
Constructing \tilde{N}

- **Proposition**: The set $\{v_1, v_2, \ldots\}$ is normal in the limit.
- **Lemma**: [Champernowne] Let W be a set of words that is normal in the limit. Let w_1, w_2, \ldots be a sequence of words in W such that

\[
\forall w \in W \frac{|\{i \leq t: w_i = w\}|}{t} \xrightarrow{t \to \infty} 0
\]

and

\[
\frac{|w_{t+1}|}{|w_1 \ldots w_t|} \xrightarrow{t \to \infty} 0.
\]

Then the sequence $N = w_1 w_2 \ldots$ is normal.
Constructing \tilde{N}

- **Corollary:** The sequence

$$S_1 = v_1 v_2 v_2 v_3 v_3 v_3 \ldots$$

obtained by concatenating \(i \) copies of \(v_i \) is normal.
Constructing L

- For any word $w \in \{0, 1\}^*$, let

\[d(w) = \#_0(w) - \#_1(w). \]

Define L to be the language of all words that have as many 0’s as 1’s, i.e.,

\[L = \{w \in \{0, 1\}^* : d(w) = 0\}. \]

- L is obviously a deterministic one-counter language: store sign and absolute value of $d(\nu)$ (ν being the scanned prefix of the input) by state and number of stack symbols, respectively.
\(\tilde{N} / L \) is not normal

- Call each \(v_i \) a designated subword. Let \(z_t \) be the prefix of \(\tilde{N} \) that consists of the first \(t \) designated subwords.

- **Proposition:** Among all prefixes \(w \) of \(\tilde{N} \), exactly the prefixes the form

 \[
 z_t = v_1 v_2 v_2 v_3 v_3 v_3 \ldots v_i(t) v_i(t)
 \]

 for any \(t \geq 1 \) satisfy \(d(w) = 0 \), hence are in \(L \).

- Observe: Each designated subword \(v_i \) starts with 0.
Theorem: There exists a linear language L and a normal sequence \hat{N} such that the sequence \hat{N}/L selected from \hat{N} by L is infinite and constant.
Constructing L

- For any word $w = w(0) \ldots w(n-1)$ of length n, let
 \[w^R = w(n-1) \ldots w(0) \]
 be the mirror word of w and let
 \[L = \{ww^R : w \in \{0, 1\}^*\} \]
 be the language of palindromes of even length.
- L is linear because it can be generated by a grammar with start symbol S and rules
 \[S \rightarrow 0S0 \mid 1S1 \mid \lambda. \]
Constructing \hat{N}

- \hat{N} is defined in stages $s = 0, 1, \ldots$ where during stage s we specify prefixes \tilde{z}_s and z_s of N.
- Start with $\tilde{z}_0 = z_0 = \lambda$ and set

$$\tilde{z}_s = z_{s-1}v_s \ldots v_s \ (2^{s-1} \text{ copies of } v_s),$$

and

$$z_s = \tilde{z}_s \tilde{z}_s^R.$$
Examples of the first z_i:

\[z_1 = v_1 v_R^1, \]
\[\tilde{z}_2 = v_1 v_R^1 v_2 v_2, \]
\[z_2 = v_1 v_R^1 v_2 v_2 v_R^2 v_R^1 v_1, \]
\[\tilde{z}_3 = v_1 v_R^1 v_2 v_2 v_R^2 v_R^1 v_1 v_R^3 v_R^3 v_R^3, \]
\[z_3 = v_1 v_R^1 v_2 v_2 v_R^2 v_R^2 v_R^1 v_1 v_R^3 v_R^1 v_1 v_R^2 v_2 v_R^2 v_R^2 v_R^2 v_R^2 v_R^1 v_1 v_R^1. \]
Does Not Preserve Normality

- Use Champernowne’s Lemma to show that \hat{N} is normal.

- Proposition: The set of prefixes of \hat{N} that are in L is precisely the set

 \[\{z_s : s \geq 0\} \]

- It follows that L selects from \hat{N} an infinite subsequence that consists only of 0’s, since any prefix z_s of \hat{N} is followed by the word v_{s+1}, where all these words start with 0.
Complexity Issues

• How complex are the counterexamples constructed?
• We want to measure the complexity of the sequence as a language.
• For \hat{N} and \tilde{N}, $w \in \hat{N}, \tilde{N}$ can be tested by a nondeterministic linear bounded automaton. Hence $\hat{N}, \tilde{N} \in \text{NSPACE}(O(n))$.
• This means they are both context sensitive.
Complexity Issues

- How complex may these counterexamples be?
- Coding at very distant positions, we can make \hat{N}, \tilde{N} arbitrary complex without destroying normality.
- If we code after a block z_i, those places can be ignored by a one counter automaton.