
Outline of Lecture 5

Randomness in Fractal Geometry and Dynamical Systems

Randomness for Hausdorff Measures.
Kolmogorov Complexity and Hausdorff Dimension.
Frostman’s Lemma.
Extracting Randomness.
Selection Rules, Lowness, and Triviality



Hausdorff Measures

For s � 0, define set function

Hs
�(E) = inf

�
X

i

d(Ui)
s : E ✓

[

i

Ui, d(Ui)  �

✏
.

Letting � ! 0 yields an outer measure.
The s-dimensional Hausdorff measure Hs is defined as

Hs(E) = lim
�!0

Hh
� (E)



Properties of Hausdorff Measures

Hs is Borel regular:
all Borel sets B are measurable, i.e.

(8A ✓ X)Hs(A) = Hs(A \ B) +Hs(A \ B),

and for all A ✓ X there is a Borel set B ✓ A such that

Hs(B) = Hs(A).

For X = Rn (Euclidean) and s = n, Hn yields the usual
Lebesgue measure � (up to a multiplicative constant).



From Measure to Dimension

Important property: For 0  s < t < 1 und E ✓ X,
Hs(E) < 1 ) Ht(E) = 0,

Ht(E) > 0 ) Hs(E) = 1.

The Hausdorff dimension of a set E is defined as
dimH(E) = inf{s � 0 : Hs(E) = 0}

= sup{t � 0 : Ht(E) = 1}



Hausdorff Dimension – Famous examples

Mandelbrot set – dimH = 2



Hausdorff Dimension – Famous examples

Koch snowflake – dimH = log 4/ log 3



Hausdorff Dimension – Famous examples

Cantor set – dimH = log 2/ log 3



Hausdorff Dimension – Famous examples

Frequency sets – For 0  p  1, let

Ap =

�
X 2 2N : lim

n

|{i < n : X(i) = 1}|

n
= p

�
.

Then dimH Ap = H(p) = -[p log p+ (1- p) log(1- p)]
[Eggleston].



Properties of Hausdorff Dimension
Lebesgue measure: �(A) > 0 implies dimH(A) = 1.
Monotony: A ✓ B implies dimH(A)  dimH(B).
Stability: For A1,A2, · · · ✓ 2N it holds that

dimH(
[

Ai) = sup {dimH(Ai)}.

Important geometric properties:
If F is Hölder continuous, i.e. if there are constants c, r > 0

for which

(8x, y) d(F(x), F(y))  cd(x, y)r,

then

dimH F(A)  (1/r)dimH(A).

For r = 1, F is Lipschitz continuous. If F is bi-Lipschitz,
then

dimH h(A) = dimH(A).



Hausdorff Dimension and Martingales

Hausdorff dimension can be expressed in terms of martingales.

Given s � 0, a martingale F is called s-successful on a real
X 2 2N if

lim sup
F(X�n)
2(1-s)n

= 1.

Note that the usual success-notion for martingales is just
being 1-successful.

Theorem [Lutz]

For any set A ✓ 2N,

dimH A = inf{s : 9 martingale F s-successful on all X 2 A}.



Packing Dimension
Lutz’ martingale characterization allows for an easy
characterization of another dimension concept, packing
dimension, which can be seen as a dual to Hausdorff dimension.

Instead of “covering” a set with open balls, “pack” it with
disjoint balls.

Given 0 < s  1, a martingale F is strongly s-successful on a
real X if

lim inf
F(X�n)
2(1-s)n

! 1.

Theorem [Athreya, Hitchcock, Lutz, and Mayordomo]

For any set A ✓ 2N,

dimP A = inf{s : 9 F strongly s-successful on all X 2 A}.



Effective Hausdorff Dimension

The effective Hausdorff dimension, or constructive dimension),
of A ✓ 2N is defined as

dim1
H A = inf {s 2 Q+

0 : A is effectively Hs-null}.

Effective dimension has an important stability property
[Lutz]:

dim1
H A = sup {dim1

H{X} : X 2 A}.

For a single real X 2 2N, we put dim1
H X = dim1

H{X}.
There are single reals of non-zero dimension: every
�-random real has dimension one.



Effective Dimension and Kolmogorov Complexity

Effective Hausdorff dimension can be interpreted as a degree of
incompressibility.

Theorem (Ryabko; Mayordomo)

For every real X,

dim1
H X = lim inf

n!1

K(X�n)
n

.



Effective Dimension and Kolmogorov Complexity

Effective packing dimension (constructive strong dimension)
can be effectivized using the martingale characterization by
Athreya et al.

Theorem (Athreya et al)

For every real X,

dim1
P X = lim sup

n!1

K(X�n)
n

.



The three basic examples

Let 0 < r < 1 rational. Given a Martin-Löf random set X, define
Xr by

Xr(m) =

�
X(n) if m = bn/rc,
0 otherwise.

Then dim1
H Xr = r.

Geometry: Hölder transformation of Cantor set
Information theory: Insert redundancy



The three basic examples

Let µp be a Bernoulli (“coin-toss”) measure with bias
p 2 Q \ [0, 1], and let X be random with respect to µp.
Then

dim1
H X = H(µp) := -[p log p+ p log(1- p)].

[Lutz; Eggleston]

Kolmogorov complexity can be seen as an effective version
of entropy.



The three basic examples

Let U be a universal, prefix-free machine. Given a computable
real number 0 < s  1, the binary expansion of the real number

⌦(s) =
X

�2dom(U)

2-
|�|
s

has effective dimension s [Tadaki].

Note that ⌦(1) is just Chaitin’s ⌦.



Randomness Extraction

Each of the three examples actually computes a Martin-Löf
random real.

This is obvious for the “diluted” sequence.
For recursive Bernoulli measures, one may use
Von-Neumann’s trick to turn a biased random real into a
uniformly distributed random real.
More generally, any real which is random with respect to a
recursive measure computes a Martin-Löf random real
[Levin; Kautz].
⌦(s) computes a fixed-point free function. It is of r.e.
degree, and hence it follows from the Arslanov
completeness criterion that ⌦(s) is Turing complete (and
thus T-equivalent to a Martin-Löf random real).



The Dimension Problem

The stability property implies that the Turing lower cone of
each of the three examples has effective dimension 1.

Question

Are there any Turing lower cones of non-integral dimension?

Any such lower cone would come from a real of non-integral
dimension for which it is not possible to extract some
content of higher degree of randomness effectively.



The Dimension Problem

Construction of reals of positive dimension for which
randomness cannot be extracted:

For m [Reimann and Terwijn, 2004]
For wtt [Reimann and Nies, 2007]

Finally, J. Miller [2010] constructed a real with dim1
H = 1/2

that does not compute any real of dimension > 1/2.



Hausdorff Dimension
Mass Distribution Principle

Support of a probability measure

supp(µ) is the smallest closed set F such that µ(2N \ F) = 0.

A ✓ 2N supports a measure µ if supp(µ) ✓ A.

Mass Distribution Principle

If A supports a probability measure µ such that for all �,

µ(�)  c2-|�|s,

then dimH A � s.



Hausdorff Dimension
Frostman’s Lemma

A fundamental result due to Frostman (1935) asserts that the
converse holds, too, as long as A is not too complicated.

Frostman’s Lemma
If A is analytic and dimH A > s > 0, then there exists a
probability measure µ such that supp(µ) ✓ A and for some
c > 0,

(8�) µ(�)  c2-|�|s.

(Call such a measure s-bounded.)

The theorem can be interpreted in the framework of capacity
theory. Define the capacitary dimension of A to be

dimc(A) = sup{s : A supports an s-bounded prob. measure}.

Then we have for analytic sets, dimc = dimH.



A pointwise version of Frostman’s Lemma
Randomness and complexity

We will prove a pointwise version of Frostman’s Lemma.

The connection with Kolmogorov complexity

An order is a nondecreasing, unbounded function h : N ! N. h

is called convex if for all n, h(n+ 1)  h(n) + 1.

Kjos-Hanssen et al called a real complex if for a computable
order h

(8n) [K(x�n) � h(n)],

where K denotes prefix-free Kolmogorov complexity.

If x is complex via h, then we call x h-complex. Reimann
showed that x is h-complex if and only if it is 2-h-random.



A pointwise version of Frostman’s Lemma
Randomness and complexity

We need to replace K by another type of Kolmogorov
complexity.

A (continuous) semimeasure is a function ⌘ : 2<N ! [0, 1] such
that

8� [⌘(�) � ⌘(�0) + ⌘(�1)].

There exists an optimal enumerable semimeasure M that
dominates (up to a multiplicative constant) any other
enumerable semimeasure (Levin).

The a priori complexity of a string � is defined as - logM(�).

Given a computable order h, we say a real x 2 2N is strongly
h-complex (- logM(�)  K(�) up to an additive constant) if

(8n) [- logM(x�n) � h(n)],



A pointwise version of Frostman’s Lemma
The main result

Given an order h, we say x is h-capacitable if there exists an
h-bounded probability measure µ such that x is µ-random.

Effective Capacitability Theorem

Suppose x 2 2N is strongly h-complex, where h is a computable,
convex order function. Then x is h-capacitable.



Effective Dimension and Continuous Randomness
Proving the effective capacitability theorem

By the Kucera-Gacs Theorem, there exists a �-random real
y such that y �wtt x via some reduction �.
For every � 2 2<N we define

Pre(�) = {⌧ : �(⌧) ◆ � & 8⌧ 0 ⇢ ⌧(�(⌧ 0) + �)}.

�(Pre(.)) is an enumerable semimeasure.
It follows that �(Pre(.)) is multiplicatively dominated by
M.
Since x is strongly Hh-complex, there exists a constants c 0

and c 00 such that for all n,

�(Pre(x�n))  cM(x�n)  c 002-h(n)

x is an infinite path through the co-r.e. tree

T = {� 2 2<N : for all n  |�|, �(Pre(��n))  c 00 2-h(n)}.



Effective Dimension and Continuous Randomness
Proving the effective capacitability theorem

We want to define µ(�), � 2 2<N. We have to satisfy two
requirements:

Preserve randomness of R when transforming with �.
Require that

(8� 2 T) [�(Pre(�))  µ(�)].

This way, a possible µ-test covering x would “lift” to a
�-test covering R.
Observe the h-bound:

µ(�)  �2-h(|�|),

for some constant �.

This singles out suitable completions of the semimeasure
induced by �.



Effective Dimension and Continuous Randomness
Proving the effective capacitability theorem

It can be shown that there exists a non-empty ⇧0
1-class of

suitable completions.

For this, the set of probability measures on 2N has to be
topologized in an effective way.

Note that if (Vn) were a µ-test covering x, then �-1(Vn)
would be a �-test relative to µ covering y.

So, what we need to show is that y is �-random relative to
µ for some µ 2 M.

Theorem
If B ✓ 2N is nonempty and ⇧0

1, then, for every y which is
�-random there is z 2 B such that y is �-random relative to z.

(Downey, Hirschfeldt, Miller, and Nies; Reimann and Slaman)



Applications of Effective Capacitability

A new proof of Frostman’s Lemma.

A new characterization of effective dimension.

Comparison of randomness notions.



Applications of Effective Capacitability
A new proof of Frostman’s Lemma

We obtain a new proof of Frostman’s Lemma for the base case
of closed sets.

Let A ✓ 2N be closed with Hs(A) > 0.
A is ⇧0

1(z) relative to some z 2 2N.
Since Hs(A) > 0, there exists an x 2 A that is strongly
Hs-complex relative to s� z.
A relativized version of the effective capacitability theorem
yields the existence of a µ such that x is µ-random relative
to s� z and µ is s-bounded with constant �.
A is ⇧0

1(z) and contains a µ-z-random real, it follows that
µ(A) > 0.
Restrict µ to A and normalize.



Applications of Effective Capacitability
A new proof of Frostman’s Lemma

The new proof is of a profoundly effective nature.

Kucera-Gacs Theorem (does not have a classical
counterpart)
Compactness is used in the form of a basis result for ⇧0

1

classes.
The problem of assigning non-trivial measure to A is
solved by making an element of A random.

Kjos-Hanssen observed that strong randomness is the precise
effective level for which a pointwise Frostman Lemma holds.

Theorem
If x is not strongly Hh-random then x is not effectively
h-capacitable.



Applications of Effective Capacitability
A new characterization of effective dimension

We also obtain a new characterization of effective dimension.

Theorem
For any real x 2 2N,

dim1
H x = sup{s 2 Q : x is h-capacitable for h(n) = sn}.



Selection Rules

Von Mises (1919) – Grundlagen der Wahrscheinlichkeitsrechung

Kollektives – Probabilities from a single sequence of
outcomes

(1) “The relative frequencies of the attributes must possess
limiting values.”

(2) “... these limiting values must remain the same in all partial
sequences which may be selected from the original one in
an arbitrary way... The only essential condition is that the
question whether or not a certain member of the original
sequence belongs to the selected partial sequence should be
settled independently of the result of the corresponding
observation.”



Selection Rules
Von Mises revisited

Admissible selection rules
How should the notion of a selection rule be formalized? What
does “independently of” mean?

Admissible: Select all even/odd/prime/... positions.
Not admissible: Given a sequence 011010100 . . . , select all
positions where 0 occurs.

Two alternatives

(1) Fix the Kollektiv. Then try to find out what the admissible
selection rules are.

(2) Fix the admissible selection rules. Then investigate the
Kollektiv obtained.



Selection Rules
The Kollektive of normal numbers

Normal numbers
In a normal sequence every finite binary string � occurs with
limiting frequency 2-|�|.

Normal numbers as Kollektives – the modern view
Let T : 2N ! 2N be the shift map, and given x 2 2N, let �x be
the Dirac measure residing on x. Then, if x is normal, any limit
point (in the weak topology) of the measures

µn =
1

n

n-1X

i=0

�T i(x)

is the uniform (1/2, 1/2)-Bernoulli measure.



Selection Rules
Types

Two types of selection rules

Oblivious selection rule: sequence S 2 2N.
Subsequence y = x/S obtained: all the bits x(i) with
S(i) = 1.
(General) Selection rule: set L ✓ 2<N.
Subsequence y = x/L obtained: the bits x(i) such that the
prefix x(0) . . . x(i- 1) is in L.

Question

Which general selection rules preserve normality?



Selection Rules
Normality and finite automata

Fundamental result by Agafonoff (1968), Schnorr and Stimm
(1972), and Kamae and Weiss (1975).

Theorem
If L is recognized by a finite automata, then L preserves
normality.



Selection Rules
Normality and automata

Kamae and Weiss asked if normality is preserved by larger
classes of languages, too (e.g. context-free languages).

By generalizing Champernowne’s construction Merkle and R.
(2006) gave two counterexamples:

Theorem
There exist

a normal sequence not preserved by a deterministic
one-counter language (accepted by a deterministic
pushdown automata with unary stack alphabet);
a normal sequence not preserved by a linear language
(slightly more complicated).



Selection Rules
Oblivious selection rules – the role of entropy

For oblivious selection rules, Kamae (1973) gave a complete
characterization in terms of entropy of measures generated by
sequences under shift map.

Invariant measures for the shift map

If T denotes the shift map on 2N and x 2 2N, then any limit
point of the measures

µx
n =

1

n

n-1X

i=0

�T i(x)

is shift invariant.



Selection Rules
Kamae’s Theorem

To any shift-invariant measure µ is assigned an entropy h(µ).

Kamae-entropy

For x 2 2N, define h(x) = sup{h(µ) : µ is a limit point of {µx
n}}.

Theorem
If S 2 2N has positive lower density, i.e.

lim infn 1/n
P

k S(k) > 0, then the following are equivalent.

(i) S preserves normality

(ii) h(S) = 0

The proof uses Furstenberg’s notion of disjointness: Every
process of Kamae entropy 0 is disjoint from a process of
completely positive entropy.



Lowness for randomness

Van Lambalgen (1987) studied reals that preserve Martin-Loef
randomness in the following sense:

If x is µ-random, then it is also µ-random relative to z.

(The sequence z provides no useful information to prove any
µ-random real non-random.) Call such reals low for
mu-random.

In the following we restrict ourselves to Lebesgue measure �.

Question

Are there non-computable reals that are low for random?



Martin-Löf Randomness
Lowness for randomness

Kucera and Terwijn (1999) showed that such reals exist. They
constructed a simple r.e. set that is low for random.

The construction was the first example of a cost function
construction.

Questions

What is the recursion theoretic nature of such reals?
Is there a connection to entropy as in Kamae’s result?



Algorithmic Entropy
Entropy and randomness

Schnorr’s Theorem (1973)

A real x is Martin-Löf random if and only if

9c 8n K(x�n) � n- c.

Pointwise Shannon-McMillan-Breiman Theorem
(Levin,Brudno)

If µ is a computable Bernoulli measure, then for any µ-random
x

lim
n!1

K(x�n)
n

= h(µ) = -[p log p+ (1- p) log(1- p)].



Algorithmic Entropy
Reals of low information content

K-triviality

Chaitin (1976) considered trivial reals:

9c 8n C(A�n)  C(n) + c

He showed that a real is C-trivial if and only if it is
recursive.
Solovay (1975) constructed non-recursive K-trivial reals.
Chaitin showed that all K-trivial reals are �0

2.

Low for K

Muchnik (1999) introduced reals that are low for K:

9c 8� Cx(�) � C(�)- c



Algorithmic Entropy
Lowness for randomness = K-trivial

Work mainly by Nies (2005) showed that all notions coincide.

Theorem
A real x is low for random iff it is low for K iff it is

K-trivial.

K-triviality hence provides a robust notion of low information
content.

Computational properties

The K trivial reals form a ⌃0
3 ideal in the Turing degrees.


