Homework 10 for
MATH 497A, Introduction to Ramsey Theory

Solutions

Problem 1 – Non-standard models of arithmetic, part I

Consider the language \(\mathcal{L} = \{ S, +, 0 \} \), where \(S \) is a unary function symbol, + is a binary function symbol, and 0 is a constant symbol.

Consider the first four Peano axioms:

(P1) \(\forall x (S(x) \neq 0) \)
(P2) \(\forall x \forall y (S(x) = S(y) \rightarrow x = y) \)
(P3) \(\forall x (x + 0 = x) \)
(P4) \(\forall x \forall y (x + S(y) = S(x + y)) \)

A structure satisfying these sentences is \(M = (\mathbb{N}, +, 0) \), i.e. \(S \) is interpreted as adding 1, + is interpreted as the usual addition of natural numbers, and 0 is interpreted as the number 0. Find three other (mutually non-isomorphic) structures that satisfy these sentences, but that are not isomorphic to \(M \).

(Hint: For example, you could add new elements to \(\mathbb{N} \) and interpret the functions on those elements appropriately.)

Solution.

1.) Add an element \(\omega \) to the standard model, i.e. \(M_1 = \mathbb{N} \cup \{ \omega \} \) and define

\[
S(\omega) = \omega \\
\omega + n = n + \omega = \omega + \omega = \omega
\]

It is easily verified that the axioms hold in \(M_1 = (M_1, S, +, 0) \). We show that \(M_1 \) is not isomorphic to the standard model. Assume there was an isomorphism \(h : \mathbb{N} \rightarrow M_1 \). Since \(h \) is a bijection there exists exactly one \(n \in \mathbb{N} \) such that \(h(n) = \omega \). This implies \(\omega = S(h(n)) \neq h(S(n)) \in \mathbb{N} \), contradiction.

2.) Add a copy \(\hat{\mathbb{N}} = \{ \hat{n} : n \in \mathbb{N} \} \) to \(\mathbb{N} \), i.e. \(M_2 = \mathbb{N} \cup \hat{\mathbb{N}} \) and define

\[
S(n) = n + 1 \\
\hat{n} + m = m + \hat{n} = \hat{n} + m \\
\hat{h} + \hat{m} = \hat{h} + \hat{m}
\]

Again the axioms are easily verified. \(M_2 = (M_2, S, +, 0) \) is not isomorphic to the standard model similar to \(M_1 \). Furthermore, \(M_2 \) is not isomorphic to \(M_1 \): Assume \(h : M_1 \rightarrow M_2 \) were an isomorphism. Then there exists \(n \in \mathbb{N} \) such that \(h(n) = \hat{m} \in \hat{\mathbb{N}} \) but \(h(S(n)) \in \mathbb{N} \) (since otherwise only finitely many \(n \in \mathbb{N} \) would be mapped to \(\hat{\mathbb{N}} \)). It follows that \(\exists n \in \mathbb{N} : h(S(n)) = S(h(n)) = S(\hat{m}) = S(\hat{n}) \in \mathbb{N} \), contradiction.

3.) Add the real numbers to the standard model, i.e. \(M_3 = \mathbb{N} \cup \hat{\mathbb{R}} \). Define for \(\alpha, \beta \in \mathbb{R} \)

\[
S(\alpha) = \alpha + 1 \\
\alpha + m = m + \alpha = \alpha + R m \\
\alpha + \beta = \alpha + R \beta
\]

This structure cannot be isomorphic to the other ones since it is uncountable.

Problem 2 – Models of PA

Show that \(\mathbb{R}^{\geq 0} = (\mathbb{R}^{\geq 0}, +, R, 1, 0) \) is not a model of PA.

Solution. We define

\[x \leq y \iff \exists z (x + z = y), \quad \text{and} \quad x < y \iff x \leq y \land x \neq y. \]

Let \(\mathbf{1} = S(0) \). By (P1), we have \(0 \neq \mathbf{1} \).
Using (P4), one can show that
\[1 \leq y \iff \exists z (S(z) = y). \]
Now use (PInd) to show that
\[\text{PA} \models \forall y (y = 0 \lor [0 < y \Rightarrow \exists z (S(z) = y)]). \]
Hence
\[\text{PA} \models \forall y (0 < y \Rightarrow 1 \leq y), \]
but \(\mathbb{R}^{\geq 0} \) does not satisfy this sentence.

\section*{Problem 3 – Axiomatization of groups}

Let \(\mathcal{L} = \{ \cdot, 0 \} \) be the language of groups. Find finitely many \(\mathcal{L} \)-sentences \(\Phi = \{ \varphi_1, \ldots, \varphi_n \} \) such that every model of \(\text{GT} \cup \Phi \) is isomorphic to \(\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z} \).

Do the same for \(\mathbb{Z}_4 \).

\textbf{Bonus:} Is this possible for any distinct finite group? That is, if \(G \) is a finite group, does there exist a (finite) set of sentences \(\Phi_G \) such that every model of \(\text{GT} \cup \Phi_G \) is isomorphic to \(G \)?

\textbf{Solution.} For \(\mathbb{Z}_2 \): There is (up to isomorphism) only one group with two elements. Hence it suffices to ensure that any model of \(\text{GT} \cup \Phi \) has exactly two elements. This can be done using the sentence
\[\exists x_1, x_2 (x_1 \neq x_2 \land \forall y (y = x_1 \lor y = x_2)). \]

For \(\mathbb{Z}_4 \): There are (up to isomorphism) two groups of order four - \(\mathbb{Z}_4 \) and the Klein-Four Group \(\mathbb{Z}_2 \times \mathbb{Z}_2 \). The latter group is not cyclic. So we let, similar to the case \(\mathbb{Z}_2 \), \(\varphi_1 \) be the statement that there exist exactly 4 elements, and let \(\varphi_2 \) be the sentence
\[\exists x \forall y (y = x \lor y = x \cdot x \lor y = x \cdot x \cdot x \lor y = x \cdot x \cdot x \cdot x). \]

Then \(\text{GT} \cup \{ \varphi_1, \varphi_2 \} \) has only \(\mathbb{Z}_4 \) as a model.

\(G \) an arbitrary finite group of order \(n \): Every finite group is completely determined (up to isomorphism) through its multiplication table. Hence we only need one sentence to define \(G \) up to isomorphism: The sentence
\[\exists x_1, \ldots, x_n \left[\bigwedge_{i \neq j} x_i \neq x_j \land \text{(relations of the multiplication table of the form } x_i \cdot x_j = x_k \text{)} \right]. \]

\section*{Problem 4 – The compactness theorem, again}

Fix a language \(\mathcal{L} \). Show that a set \(T \) of \(\mathcal{L} \)-sentences has a model if and only if every finite subset of \(T \) has a model.

\textbf{Solution.} Clearly, if \(T \) has a model then every finite subset of \(T \) has a model.

Now assume every finite subset of \(T \) has a model. Suppose for a contradiction \(T \) does not have a model. Then every model of \(T \) is trivially (since there is none) also a model of \(\varphi \land \neg \varphi \) for any sentence \(\varphi \), that is, \(T \models (\varphi \land \neg \varphi) \). By the completeness theorem, \(T \vdash (\varphi \land \neg \varphi) \), i.e. \(T \) is inconsistent. There must exist a finite proof of \((\varphi \land \neg \varphi) \). This proof can use only finitely many formulas from \(T \). Collect these finitely many formulas in a finite subset \(T_0 \subseteq T \). Then \(T_0 \vdash (\varphi \land \neg \varphi) \) and hence \(T_0 \models (\varphi \land \neg \varphi) \). By assumption, \(T_0 \) has a model, say \(M \), and \(T_0 \models (\varphi \land \neg \varphi) \) implies that \(M \models (\varphi \land \neg \varphi) \), which is impossible.

\section*{Problem 5 – Non-standard models of arithmetic, part II}

Let \(\mathcal{L} = \{ S, +, \cdot, 0 \} \), and let \(\mathbb{N} \) be the standard \(\mathcal{L} \)-structure of the natural numbers.

Let \(T_{1\mathbb{N}} = \{ \varphi : \mathbb{N} \models \varphi \} \). \(T_{1\mathbb{N}} \) is called the \textit{(first-order) theory of arithmetic}. Use the compactness theorem (above, #3) to show that there exists a model of \(T_{1\mathbb{N}} \) that is not isomorphic to \(\mathbb{N} \).

\textbf{Solution.} Extend the language of arithmetic by adding a new constant symbol \(\zeta \).

For \(n \in \mathbb{N} \), let \(\varphi_n \) be the sentence \(n < \zeta \). Put \(T' = T_{1\mathbb{N}} \cup \{ \varphi_n : n \in \mathbb{N} \} \).

Every finite subset of \(T' \) has a model – the standard model \(\mathbb{N} \) (we just have to interpret \(\zeta \) large enough). By the compactness theorem in #4, we infer that \(T' \) has a model \(M \). By construction, \(M \) is also a model of \(T_{1\mathbb{N}} \). But in \(M \) it must hold that \(c \) (the interpretation of the constant symbol \(\zeta \)) is greater than every natural number.