Problem 1

Variant of the Compactness Principle

Let \(r \geq 2, \ p \geq 1, \) and let \(\mathcal{F} \) be a family of finite subsets of \(\mathbb{N} \). Assume that for every \(r \)-coloring of \([\mathbb{N}]^p\) there exists a member \(A \in \mathcal{F} \) such that \([A]^k\) is monochromatic. Show that there exists an \(N > 0 \) such that for every \(r \)-coloring of \([\mathbb{N}]^p = [\{1, \ldots, N\}]^p\), there exists an \(A \in \mathcal{F} \) such that \(A \subseteq [1, N] \) and \([A]^p\) is monochromatic.

Problem 2

Equivalent versions of Van der Waerden’s Theorem

Show that the following statements are equivalent.

(i) For any \(k \geq 2 \), any 2-coloring of \(\mathbb{N} \) admits a monochromatic AP of length \(k \).

(ii) For any \(k \geq 2 \), \(W(k, 2) \) exists.

(iii) For any \(k, r \geq 2 \), \(W(k, r) \) exists.

(iv) Let \(r \geq 2 \). For any \(r \)-coloring of \(\mathbb{N} \) and any finite subset \(S = \{s_1, \ldots, s_n\} \) of \(\mathbb{N} \) there exist integers \(a, d \) such that \(a + dS = \{a + ds_1, \ldots, a + ds_n\} \) is monochromatic.

(v) For any \(k, r \geq 2 \), any \(r \)-coloring of \(\mathbb{N} \) admits a monochromatic AP of length \(k \).

Problem 3

Number of arithmetic progressions

Show that within the set \(\{1, \ldots, n\} \) there exist \(\frac{n}{2(k-1)}(1 + o(1)) \) arithmetic progressions of length \(k \).

Problem 4

Lower bound

Show that \(W(3, 3) > 26 \).