Homework 6 for
MATH 497A, Introduction to Ramsey Theory

Due: Monday October 3

Problem 1

Failure of Ramsey’s Theorem for infinite colorings

Show that for any infinite cardinal \(\kappa \), \(2^\kappa \not\rightarrow (3)_2^2 \).

Solution. This is in the lecture notes from 09/26.

Problem 2

Failure of Ramsey’s Theorem for power sets

Show that for any cardinal \(\kappa \), \(2^\kappa \not\rightarrow (\kappa^+)_2^2 \).

Solution. Sketch: The strategy is the same as in the proof that \(2^{\aleph_0} \not\rightarrow (\aleph_1)_2^2 \).

The crucial lemma is to show that the lexicographically ordered set \(\{0, 1\}^\kappa \) has no increasing or decreasing sequence of length \(\kappa^+ \).

To see this, assume for a contradiction that \(W = \{ f_\alpha : \alpha < \kappa^+ \} \subseteq \{0, 1\}^\kappa \) is a lexicographically increasing sequence of length \(\kappa^+ \) (the decreasing case is similar). Let \(\gamma \leq \kappa \) be the least \(\gamma \) such that the set \(\{ f_\alpha \upharpoonright \gamma : \alpha < \kappa^+ \} \) has size \(\kappa^+ \). Clearly \(\xi_a \) is the position where \(f_\alpha \) first differs from its successor \(f_{\alpha+1} \). To see this, assume for a contradiction that \(\gamma \leq \kappa \) is the least \(\gamma \) such that the set \(\{ f_\alpha \upharpoonright \gamma : \alpha < \kappa^+ \} \) has size \(\kappa^+ \). Hence by the infinite pigeonhole principle there exists \(\xi < \gamma \) such that \(\xi = \xi_a \) for \(\kappa^+ \) many elements \(f_\alpha \) of \(W \). However, if \(\xi = \xi_a = \xi_b \) and \(f_\alpha \upharpoonright \xi = f_b \upharpoonright \xi \), then \(f_b < f_{\alpha+1} \) and \(f_\alpha < f_{\beta+1} \), which means \(f_a = f_b \). Thus the set \(\{ f_\alpha \upharpoonright \xi : \alpha < \kappa^+ \} \) has size \(\kappa^+ \), contrary to the minimality assumption on \(\gamma \).

Problem 3

Increasing sequences of real numbers

Show that for any ordinal \(\beta < \omega_1 \), there exists an increasing sequence of reals of length \(\beta \), i.e. a sequence \(\{ a_\xi : \xi < \beta \} \) such that for any \(\xi < \beta \), \(a_\xi \triangleq a_{\xi+1} \).

Solution. We prove this by transfinite induction. For \(\beta = 0 \) there is nothing to show, so assume the assertion holds for all \(\alpha < \beta \). If \(\beta \) is a successor ordinal, \(\beta = \alpha + 1 \), let \((a_\xi : \xi < \alpha) \) be an increasing sequence of length \(\alpha \). Using an order preserving bijection between \(\mathbb{R} \) and \((0, 1) \), we can assume that \((a_\xi) \) is contained in \((0, 1) \). Then the sequence \((b_\xi) \) defined as \(b_\xi = a_\xi \) for \(\xi < \alpha \), \(b_\alpha = 1 \) is an increasing sequence of length \(\beta \).

Now assume \(\beta \) is a countable limit ordinal. Let \((\xi_n) \) be a sequence of countable ordinals so that \(\sup \{ \xi_n : n \in \mathbb{N} \} = \beta \).

By induction hypothesis, there exists an increasing sequence \((a_\xi^1 : \xi < \xi_1) \) of length \(\xi_1 \). Using again an order preserving bijection between \(\mathbb{R} \) and \((0, 1) \), we can assume that \((a_\xi^1)_{\xi < \xi_1} \) is contained in \((0, 1) \).
There exists a unique ordinal \(\gamma_1 \) such that \(\xi_1 + \gamma_1 = \xi_2 \). \(\gamma \) is the order type of \(\{ \eta : \xi_1 \leq \eta < \xi_2 \} \) (i.e. we “subtract” \(\xi_2 \) from \(\xi_2 \)). By induction hypothesis there exists sequence \((b^1_\zeta : \zeta < \gamma_1) \) of length \(\gamma_1 \). Using an order preserving bijection, we can assume that \((b^1_\zeta) \) is contained in \((1, 2) \) and “append” it to \((a^2_\xi) \), yielding a sequence of length \(\xi_3 \). In the limit, this yields an increasing sequence in \((0, \infty) \) of length \(\beta \).