Homework 2 for MATH 497A, Introduction to Ramsey Theory

Due: Wednesday September 7

Problem 1

Show that the Ramsey numbers $R(m, n)$ (really $R(m, n; 2)$ in light of Problem 2) satisfy the bound

$$R(m, n) \leq \binom{m + n - 2}{m - 1}$$

for all $m, n \geq 1$. (Hint: Exploit the familiar recursions for the binomial coefficients)

Solution. We prove the assertion by simultaneous induction on m, n. To ground the induction note that

$$R(m, 2) = m = \binom{m}{m - 1} = \binom{m + 2 - 2}{m - 1}$$

and

$$R(2, n) = n = \binom{n}{1} = \binom{2 + n - 2}{1 + 1}.$$

Now assume the assertion has been proved for all $(k, n), k < m$, and $(m, l), l < n$. Then

$$R(m, n) \leq R(m - 1, n) + R(m, n - 1) \leq \binom{m + n - 3}{m - 2} + \binom{m + n - 3}{m - 1} = \binom{m + n - 2}{m - 1}.$$

Show further that $R(k) (= R(k, k) = R(k, k; 2)) \leq 2^{2k - 3}$. We have

$$R(k) \leq \binom{2k - 2}{k - 1} \leq \binom{2k - 3}{k - 1} + \binom{2k - 3}{k - 2} \leq 2^{2k - 3},$$

since $\sum \binom{n}{k} = 2^k$.

Problem 2

Prove Ramsey’s Theorem for r colors. That is, show that for any $k \geq 1$ and any $r \geq 1$ there exists a number $R(k; r) = R(k, k; r)$ such that whenever $G = (V, E)$ is a graph on $\geq R(k, k; r)$ vertices, and $c : E \to \{1, \ldots, r\}$ is an r-coloring of the edges of G, then there exists $j, 1 \leq j \leq r$ and $W \subseteq V$ such that $c(e) = c_j$ for all edges connecting two vertices in W.

Problem 3

Show that if the integer plane $\mathbb{Z}^2 = \{(x, y) : x, y \in \mathbb{Z}\}$ is 2-colored, there exists a monochromatic rectangle. i.e. a rectangle with all four corners the same color. Can you generalize this result to r colors?

Solution. We prove the general result for r colors. Consider the grid given by $1 \leq x \leq r + 1$ and $1 \leq y \leq r^{r+1} + 1$. Each row corresponds to an r-coloring of the set $\{1, \ldots, r + 1\}$. There are r^{r+1} different colorings, so within the grid one row must have the same coloring. Since a row in the grid contains $r + 1$ elements, one color must appear at least twice in both rows (at the same position, respectively). This gives rise to a monochromatic rectangle.

Nota Bene: If you like this problem, you may find this challenge interesting –

Problem 4

Complete the following, alternative proof of Turán’s Theorem:

Proceed by induction on \(N = |V| \). Assume the assertion is proven for \(N - 1 \). Suppose \(G = (V,E) \) is a graph on \(N \) vertices without a \(k \)-clique with a maximal number of edges (i.e. if we add one more edge, we have get a \(k \)-clique). Argue first that \(G \) contains a \((k-1)\)-clique. Let \(A \subseteq V \) be such a clique, and let \(B = V \setminus A \). Now obtain upper bounds on (1) the number of edges between vertices in \(A \), (2) the number of edges connecting \(A \) and \(B \), (3) the number of edges between vertices in \(B \). Add up the three upper bounds to obtain the desired upper bound on \(|E|\).

Solution. If \(G \) did not contain a \((k-1)\)-clique, there would be two vertices of degree \(k - 2 \), and hence we could add an edge without creating a \(k \)-clique.

Now we have: (1) the number of edges \(e_A \) in \(A \) is \((k-1)\). (2) No vertex in \(B \) can be adjacent to more than \(k - 2 \) vertices in \(A \), since otherwise this vertex and \(A \) would form a \(k \)-clique. Hence \(e_{AB} \leq (k-2)(N-k+1) \).

(3) The number of vertices in \(B \) is less than \(N \), and so we can use the induction hypothesis and conclude \(e_B \leq (1 - \frac{1}{k-1}) \frac{(N-k+1)^2}{2} \).

Putting the three bounds together we obtain

\[
|E| \leq \left(\frac{k-1}{2} \right) + (k-2)(N-k+1) + \left(1 - \frac{1}{k-1} \right) \frac{(N-k+1)^2}{2} = \frac{(k-1)(k-2)}{2} + \frac{k-2}{k-1}(N-k+1)(k-1) + \left(1 - \frac{1}{k-1} \right) \frac{(N-k+1)^2}{2} = \left(1 - \frac{1}{k-1} \right) \frac{(k-1) + (N-k+1))^2}{2} = \left(1 - \frac{1}{k-1} \right) \frac{N^2}{2}.
\]

■