Geometric Sequences

Supplemental Material Not Found in Your Text

Math 34: Fall 2014

Do NOT print these slides!!

There are printer friendly files on the website.

September 22, 2014
Geometric Sequences

1. Geometric Sequences
 - Motivating Examples
 - Review

2. Formula for Geo. Seq.

3. Examples
 - Compound Interest
 - Real World Example

4. Partial Sums
 - Formula
 - Example

5. Homework
Geometric Sequences will help us answer the following:

- An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?
A Geometric Sequence is a sequence where the ratio between any two consecutive numbers in the sequence is a constant.

In other words: $a_{k+1}/a_k = r$ where r is a constant.
A **Geometric Sequence** is a sequence where the *ratio* between any two consecutive numbers in the sequence is a constant.

In other words: \(a_{k+1}/a_k = r \) where \(r \) is a constant.

Examples of Geometric Sequences:

- \(1, 4, 16, 64, \ldots \)
- \(32, 16, 8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}, \ldots \)
A **Geometric Sequence** is a sequence where the *ratio* between any two consecutive numbers in the sequence is a constant.

In other words: \(a_{k+1}/a_k = r \) *where* \(r \) *is a constant.*

Examples of Geometric Sequences:

- 1, 4, 16, 64, \ldots

 \[\frac{4}{1} = 4, \quad \text{and} \quad \frac{16}{4} = 4, \quad \text{and} \quad \frac{64}{16} = 4 \]

- 32, 16, 8, 4, 2, 1, \(\frac{1}{2} \), \(\frac{1}{4} \), \ldots
A **Geometric Sequence** is a sequence where the *ratio* between any two consecutive numbers in the sequence is a constant.

In other words: \(a_{k+1}/a_k = r \) *where* \(r \) *is a constant.*

Examples of Geometric Sequences:

- \(1, 4, 16, 64, \ldots \) has common ratio \(r = 4 \)

 \[
 \frac{4}{1} = 4, \quad \text{and} \quad \frac{16}{4} = 4, \quad \text{and} \quad \frac{64}{16} = 4
 \]

- \(32, 16, 8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}, \ldots \)
A **Geometric Sequence** is a sequence where the *ratio* between any two consecutive numbers in the sequence is a constant.

In other words: \(a_{k+1}/a_k = r \) where \(r \) is a constant.

Examples of Geometric Sequences:
- 1, 4, 16, 64, ...
 has common ratio \(r = 4 \)
 \[
 \frac{4}{1} = 4, \quad \text{and} \quad \frac{16}{4} = 4, \quad \text{and} \quad \frac{64}{16} = 4
 \]

- 32, 16, 8, 4, 2, 1, \(\frac{1}{2} \), \(\frac{1}{4} \), ...
 \[
 \frac{16}{32} = \frac{1}{2}, \quad \text{and} \quad \frac{8}{16} = \frac{1}{2}, \quad \text{and} \quad \frac{4}{8} = \frac{1}{2}, \text{etc}
 \]
A Geometric Sequence is a sequence where the ratio between any two consecutive numbers in the sequence is a constant.

In other words: \(a_{k+1}/a_k = r \) where \(r \) is a constant.

Examples of Geometric Sequences:

- \(1, 4, 16, 64, \ldots \) has common ratio \(r = 4 \)
 \[
 \frac{4}{1} = 4, \quad \text{and} \quad \frac{16}{4} = 4, \quad \text{and} \quad \frac{64}{16} = 4
 \]

- \(32, 16, 8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}, \ldots \) has common ratio \(r = \frac{1}{2} \)
 \[
 \frac{16}{32} = \frac{1}{2}, \quad \text{and} \quad \frac{8}{16} = \frac{1}{2}, \quad \text{and} \quad \frac{4}{8} = \frac{1}{2}, \quad \text{etc}
 \]
Finding a Formula for a Geometric Sequence

Consider the Geometric Sequence: 1, 4, 16, 64, …

<table>
<thead>
<tr>
<th>Index (Order)</th>
<th>Sequence Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
</tr>
</tbody>
</table>
Finding a Formula for a Geometric Sequence

Consider the Geometric Sequence: 1, 4, 16, 64, …

<table>
<thead>
<tr>
<th>Index (Order)</th>
<th>Sequence Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = 1</td>
</tr>
<tr>
<td>1</td>
<td>4 = 1(4)</td>
</tr>
<tr>
<td>2</td>
<td>16 = 4(4)</td>
</tr>
<tr>
<td>3</td>
<td>62 = 16(4)</td>
</tr>
</tbody>
</table>

So we can write a formula for the \((n+1)\)st term:

\[a_n = 1(4)^n \]

where the index starts with \(n = 0\).
Finding a Formula for a Geometric Sequence

- Consider the Geometric Sequence: 1, 4, 16, 64, . . .

<table>
<thead>
<tr>
<th>Index (Order)</th>
<th>Sequence Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = 1 1 = 1 = 1(4)^0</td>
</tr>
<tr>
<td>1</td>
<td>4 = 1(4) = 1(4) = 1(4)^1</td>
</tr>
<tr>
<td>2</td>
<td>16 = 4(4) = 1(4)(4) = 1(4)^2</td>
</tr>
<tr>
<td>3</td>
<td>62 = 16(4) = 1(4)(4)(4) = 1(4)^3</td>
</tr>
</tbody>
</table>

So we can write a formula for the \((n + 1)^{st}\) term:
\[a_n = 1(4)^n \] where the index starts with \(n = 0 \)
The Formula for a Geometric Sequence

- A geometric sequence can be written as

\[a_0, a_0(r), a_0(r)^2, \ldots, a_0(n-1) \]

- The \((n+1)^{st}\) term of a geometric sequence is

\[a_n = a_0 r^n \]

\(a_0\) is the first term in the sequence

\(r\) is the common ratio \((r = \frac{a_1}{a_0} = \frac{a_2}{a_1} = \ldots)\)
A **geometric sequence** can be written as

\[a_0, a_0(r), a_0(r)^2, \ldots, a_0(n - 1) \]

- **Note that we start the index with 0, so...**
 - The first term is \(a_0 \),
 - The second term is \(a_1 \),
 - The third term is \(a_2 \),
 - etc.
- Each term is \(r \) times the previous term:

\[a_k = a_{k-1} \cdot r \]
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21\(\frac{1}{3}\), …

1. What is the common ratio?

2. What is the first term in the sequence?

3. What is the fifth term in the sequence?

4. Find a formula for \(a_n\). (the \(n + 1^{st}\) term in the sequence)

5. What is the 9\(^{th}\) term in the sequence? (Round to 4 decimal places)

6. What is the 20\(^{th}\) term in the sequence? (Round to 4 decimal places)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21\(\frac{1}{3}\), \ldots

1. What is the common ratio?
 \[
 \frac{12}{9} = \frac{4}{3},
 \]

2. What is the first term in the sequence?

3. What is the fifth term in the sequence?

4. Find a formula for \(a_n\). (the \(n + 1^{st}\) term in the sequence)

5. What is the 9\(th\) term in the sequence? (Round to 4 decimal places)

6. What is the 20\(th\) term in the sequence? (Round to 4 decimal places)
For the Geometric Sequence 9, 12, 16, 21 \frac{1}{3}, \ldots

1. What is the common ratio?
 \[\frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \]

2. What is the first term in the sequence?

3. What is the fifth term in the sequence?

4. Find a formula for \(a_n \). (the \(n + 1 \)st term in the sequence)

5. What is the 9th term in the sequence? (Round to 4 decimal places)

6. What is the 20th term in the sequence? (Round to 4 decimal places)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21 \frac{1}{3}, \ldots

1. What is the common ratio?
 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence?

3. What is the fifth term in the sequence?

4. Find a formula for \(a_n\). (the \(n+1^{st}\) term in the sequence)

5. What is the 9\(^{th}\) term in the sequence? (Round to 4 decimal places)

6. What is the 20\(^{th}\) term in the sequence? (Round to 4 decimal places)
For the Geometric Sequence 9, 12, 16, 21 \(\frac{1}{3}\), \ldots

1. What is the common ratio? The common ratio is \(r = \frac{4}{3}\)
 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence?

3. What is the fifth term in the sequence?

4. Find a formula for \(a_n\). (the \(n + 1\)st term in the sequence)

5. What is the 9th term in the sequence? (Round to 4 decimal places)

6. What is the 20th term in the sequence? (Round to 4 decimal places)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21 \frac{1}{3}, \ldots

1. What is the common ratio?
The common ratio is \(r = \frac{4}{3} \)

 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21 \frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence?
 \(a_0 = 9 \)

3. What is the fifth term in the sequence?

4. Find a formula for \(a_n \). (the \(n + 1 \)st term in the sequence)

5. What is the 9th term in the sequence? (Round to 4 decimal places)

6. What is the 20th term in the sequence? (Round to 4 decimal places)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21 \frac{1}{3}, \ldots

1. What is the common ratio? The common ratio is \(r = \frac{4}{3} \)

 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21 \frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence? \(a_0 = 9 \)

3. What is the fifth term in the sequence? We can find the next term by multiplying 21.\overline{3} by \(\frac{4}{3} \)

4. Find a formula for \(a_n \). (the \(n + 1 \)st term in the sequence)

5. What is the 9th term in the sequence? (Round to 4 decimal places)

6. What is the 20th term in the sequence? (Round to 4 decimal places)
Geometric Sequence Example:

For the Geometric Sequence $9, 12, 16, 21 \frac{1}{3}, \ldots$

1. What is the common ratio? The common ratio is $r = \frac{4}{3}$
 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21 \frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence? $a_0 = 9$

3. What is the fifth term in the sequence? $a_4 = 28.4$

4. Find a formula for a_n. (the $n + 1^{st}$ term in the sequence)
 \[
 a_n = 9 \left(\frac{4}{3} \right)^n
 \]

5. What is the 9^{th} term in the sequence? (Round to 4 decimal places)
 \[
 a_8 = 9 \left(\frac{4}{3} \right)^8 = 89.785
 \]

6. What is the 20^{th} term in the sequence? (Round to 4 decimal places)
 \[
 a_{19} = 9 \left(\frac{4}{3} \right)^{19} = 2128.5238
 \]
For the Geometric Sequence 9, 12, 16, 21 \frac{1}{3}, \ldots

1. What is the common ratio?
 The common ratio is \(r = \frac{4}{3} \)

 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence?
 \(a_0 = 9 \)

3. What is the fifth term in the sequence?
 We can find the next term by multiplying 21.\(\frac{1}{3} \) by \(\frac{4}{3} \)
 \(a_4 = 28.4 \)

4. Find a formula for \(a_n \). (the \(n + 1 \)\text{st} term in the sequence)
 We know \(S_n = a_0(r)^n \)

5. What is the 9\text{th} term in the sequence? (Round to 4 decimal places)

6. What is the 20\text{th} term in the sequence? (Round to 4 decimal places)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21\(\frac{1}{3}\), . . .

1. What is the common ratio? The common ratio is \(r = \frac{4}{3}\)
 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence? \(a_0 = 9\)

3. What is the fifth term in the sequence? We can find the next term by multiplying 21\(\frac{1}{3}\) by \(\frac{4}{3}\)
 \(a_4 = 28.4\)

4. Find a formula for \(a_n\). (the \(n + 1\)st term in the sequence)
 We know \(S_n = a_0(r)^n\)
 We know \(a_0 = 9\)

5. What is the 9th term in the sequence? (Round to 4 decimal places)
 \(a_8 = 89.85\)

6. What is the 20th term in the sequence? (Round to 4 decimal places)
 \(a_{19} = 2128.5238\)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21 $\frac{1}{3}$, …

1. What is the common ratio?
 The common ratio is $r = \frac{4}{3}$

 $\frac{12}{9} = \frac{4}{3}$, and $\frac{16}{12} = \frac{4}{3}$, and $\frac{21\frac{1}{3}}{16} = \frac{4}{3}$,

2. What is the first term in the sequence?
 $a_0 = 9$

3. What is the fifth term in the sequence?
 $a_4 = 28.4$

 We can find the next term by multiplying $21.\overline{3}$ by $\frac{4}{3}$

4. Find a formula for a_n. (the $n + 1^{st}$ term in the sequence)
 We know $S_n = a_0(r)^n$
 We know $a_0 = 9$ and $r = \frac{4}{3}$

5. What is the 9^{th} term in the sequence? (Round to 4 decimal places)

6. What is the 20^{th} term in the sequence? (Round to 4 decimal places)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21\(\frac{1}{3}\), . . .

1. What is the common ratio?
 The common ratio is \(r = \frac{4}{3}\).

 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence?
 \(a_0 = 9\)

3. What is the fifth term in the sequence?
 We can find the next term by multiplying 21\(\frac{1}{3}\) by \(\frac{4}{3}\).
 \(a_4 = 28.4\)

4. Find a formula for \(a_n\). (the \(n + 1^{st}\) term in the sequence)
 We know \(S_n = a_0(r)^n\)
 We know \(a_0 = 9\) and \(r = \frac{4}{3}\)
 \(a_n = 9\left(\frac{4}{3}\right)^n\)

5. What is the 9\(^{th}\) term in the sequence? (Round to 4 decimal places)
 \(a_8 = 89.85\)

6. What is the 20\(^{th}\) term in the sequence? (Round to 4 decimal places)
 \(a_{19} = 2128.5238\)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21\(\frac{1}{3}\), \ldots

1. What is the common ratio?
 The common ratio is \(r = \frac{4}{3}\)

 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence?
 \(a_0 = 9\)

3. What is the fifth term in the sequence?
 We can find the next term by multiplying 21\(\frac{1}{3}\) by \(\frac{4}{3}\)

 \(a_4 = 28.4\)

4. Find a formula for \(a_n\). (the \(n + 1^{\text{st}}\) term in the sequence)
 \(a_n = 9(\frac{4}{3})^n\)

 We know \(S_n = a_0(r)^n\)
 We know \(a_0 = 9\) and \(r = \frac{4}{3}\)

5. What is the 9\(^{\text{th}}\) term in the sequence? (Round to 4 decimal places)
 9\(^{\text{th}}\) term is \(a_8\).

6. What is the 20\(^{\text{th}}\) term in the sequence? (Round to 4 decimal places)
 \(a_{19} = 9(\frac{4}{3})^{19}\)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21 1/3, . . .

1. What is the common ratio?
 The common ratio is $r = \frac{4}{3}$

 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence?
 $a_0 = 9$

3. What is the fifth term in the sequence?
 We can find the next term by multiplying 21.3 by $\frac{4}{3}$
 $a_4 = 28.4$

4. Find a formula for a_n. (the $n + 1^{st}$ term in the sequence)
 $a_n = 9\left(\frac{4}{3}\right)^n$

 We know $S_n = a_0(r)^n$

 We know $a_0 = 9$ and $r = \frac{4}{3}$

5. What is the 9^{th} term in the sequence? (Round to 4 decimal places)
 9^{th} term is a_8.
 $a_8 = 9\left(\frac{4}{3}\right)^8 = 89.8985$

6. What is the 20^{th} term in the sequence? (Round to 4 decimal places)
Geometric Sequence Example:

For the Geometric Sequence 9, 12, 16, 21 \frac{1}{3}, \ldots

1. What is the common ratio? The common ratio is \(r = \frac{4}{3} \)
 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence? \(a_0 = 9 \)

3. What is the fifth term in the sequence? \(a_4 = 28.4 \)
 We can find the next term by multiplying 21 \frac{1}{3} by \(\frac{4}{3} \)

4. Find a formula for \(a_n \). (the \(n + 1 \)st term in the sequence)
 \[
 a_n = 9(\frac{4}{3})^n
 \]
 We know \(S_n = a_0(r)^n \)
 We know \(a_0 = 9 \) and \(r = \frac{4}{3} \)

5. What is the 9th term in the sequence? (Round to 4 decimal places)
 9th term is \(a_8 \).
 \[
 a_8 = 9\left(\frac{4}{3}\right)^8 = 89.8985
 \]

6. What is the 20th term in the sequence? (Round to 4 decimal places)
 20th term is \(a_{19} \).
For the Geometric Sequence 9, 12, 16, 21\(\frac{1}{3}\), \ldots

1. What is the common ratio? The common ratio is \(r = \frac{4}{3}\)
 \[
 \frac{12}{9} = \frac{4}{3}, \quad \text{and} \quad \frac{16}{12} = \frac{4}{3}, \quad \text{and} \quad \frac{21\frac{1}{3}}{16} = \frac{4}{3},
 \]

2. What is the first term in the sequence? \(a_0 = 9\)

3. What is the fifth term in the sequence? \(a_4 = 28.4\)
 We can find the next term by multiplying 21.3 by \(\frac{4}{3}\)

4. Find a formula for \(a_n\). (the \(n + 1^{st}\) term in the sequence) \(a_n = 9(\frac{4}{3})^n\)
 We know \(S_n = a_0(r)^n\)
 We know \(a_0 = 9\) and \(r = \frac{4}{3}\)

5. What is the 9\(^{th}\) term in the sequence? (Round to 4 decimal places)
 9\(^{th}\) term is \(a_8\).
 \[
 a_8 = 9(\frac{4}{3})^8 = 89.8985
 \]

6. What is the 20\(^{th}\) term in the sequence? (Round to 4 decimal places)
 20\(^{th}\) term is \(a_{19}\).
 \[
 a_{19} = 9(\frac{4}{3})^{19} = 2128.5238
 \]
Recall that the compound interest formula is:

$$FV = PV(1 + i)^n$$
Recall that the compound interest formula is:

\[FV = PV(1 + i)^n \]

Geometric Interest Formula:

\[a_n = a_0(r)^n \]
Geometric Sequences and Compound Interest

- Recall that the compound interest formula is:
 \[FV = PV(1 + i)^n \]

- Geometric Interest Formula:
 \[a_n = a_0(r)^n \]
Recall that the compound interest formula is:

\[FV = PV(1 + i)^n \]

Geometric Interest Formula:

\[a_n = a_0(r)^n \]
Recall that the compound interest formula is:

\[FV = PV(1 + i)^n \]

Geometric Interest Formula:

\[a_n = a_0(r)^n \]
Recall that the compound interest formula is:

\[FV = PV(1 + i)^n \]

Geometric Interest Formula:

\[a_n = a_0 (r)^n \]
Recall that the compound interest formula is:

\[FV = PV(1 + i)^n \]

Geometric Interest Formula:

\[a_n = a_0(r)^n \]

Compound Interest is a Geometric Sequence:

The first term: \(a_0 = PV \)

The common ratio: \(r = (1 + i) \)
Revisiting Our First Compound Interest Example: (From 3.1 Notes)

- Suppose Olaf invests $5,000 in an investment that pays 6% interest compounded annually. How much does he have at the end of each of the first 5 years?
Revisiting Our First Compound Interest Example: (From 3.1 Notes)

- Suppose Olaf invests $5,000 in an investment that pays 6% interest compounded annually. How much does he have at the end of each of the first 5 years?

<table>
<thead>
<tr>
<th>Year</th>
<th>Interest earned that year</th>
<th>Balance at end of year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$5000 \times 0.06 \times 1 = $300</td>
<td>$5300.00</td>
</tr>
<tr>
<td>2</td>
<td>$5300 \times 0.06 \times 1 = $318</td>
<td>$5618.00</td>
</tr>
<tr>
<td>3</td>
<td>$5618 \times 0.06 \times 1 = $337.08</td>
<td>$5955.08</td>
</tr>
<tr>
<td>4</td>
<td>$5955.08 \times 0.06 \times 1 = $357.30</td>
<td>$6312.38</td>
</tr>
<tr>
<td>5</td>
<td>$6312.38 \times 0.06 \times 1 = $378.74</td>
<td>$6691.12</td>
</tr>
</tbody>
</table>
Revisiting Our First Compound Interest Example: (From 3.1 Notes)

- Suppose Olaf invests $5,000 in an investment that pays 6% interest compounded annually. How much does he have at the end of each of the first 5 years?

<table>
<thead>
<tr>
<th>Year</th>
<th>Interest earned that year</th>
<th>Balance at end of year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$5000 \times 0.06 \times 1 = $300</td>
<td>$5300.00</td>
</tr>
<tr>
<td>2</td>
<td>$5300 \times 0.06 \times 1 = $318</td>
<td>$5618.00</td>
</tr>
<tr>
<td>3</td>
<td>$5618 \times 0.06 \times 1 = $337.08</td>
<td>$5955.08</td>
</tr>
<tr>
<td>4</td>
<td>$5955.08 \times 0.06 \times 1 = $357.30</td>
<td>$6312.38</td>
</tr>
<tr>
<td>5</td>
<td>$6312.38 \times 0.06 \times 1 = $378.74</td>
<td>$6691.12</td>
</tr>
</tbody>
</table>

- So 5000, 5300, 5618, 5955.08, 6312.38, 6691.12, ... is a geometric sequence,
Revisiting Our First Compound Interest Example: (From 3.1 Notes)

Suppose Olaf invests $5,000 in an investment that pays 6% interest compounded annually. How much does he have at the end of each of the first 5 years?

<table>
<thead>
<tr>
<th>Year</th>
<th>Interest earned that year</th>
<th>Balance at end of year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$5000 \times 0.06 \times 1 = $300</td>
<td>$5300.00</td>
</tr>
<tr>
<td>2</td>
<td>$5300 \times 0.06 \times 1 = $318</td>
<td>$5618.00</td>
</tr>
<tr>
<td>3</td>
<td>$5618 \times 0.06 \times 1 = $337.08</td>
<td>$5955.08</td>
</tr>
<tr>
<td>4</td>
<td>$5955.08 \times 0.06 \times 1 = $357.30</td>
<td>$6312.38</td>
</tr>
<tr>
<td>5</td>
<td>$6312.38 \times 0.06 \times 1 = $378.74</td>
<td>$6691.12</td>
</tr>
</tbody>
</table>

So $5000, 5300, 5618, 5955.08, 6312.38, 6691.12, \ldots$ is a geometric sequence,

- with $a_0 = $5300
- and $r = 1.06$
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- Let’s Work the Remaining Balance for a few months:
An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- Let’s Work the Remaining Balance for a few months:
 - Your starting balance (after 0 months) is
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- Let’s Work the Remaining Balance for a few months:
 - Your starting balance (after 0 months) is $12,000
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- Let’s Work the Remaining Balance for a few months:
 - Your starting balance (after 0 months) is 12,000
 - After 1 month, you owe a payment:
An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

Let’s Work the Remaining Balance for a few months:

- Your starting balance (after 0 months) is $12,000
- After 1 month, you owe a payment:

 Your first payment is 15% of $12,000

 \[0.15 \times 12000 = 1800\]
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

Let’s Work the Remaining Balance for a few months:

- Your starting balance (after 0 months) is $12,000
- After 1 month, you owe a payment:
 - Your first payment is 15% of $12,000
 - \(0.15 \times 12000 = 1800\)
 - Remaining Balance (after 1 month):
 - \(12,000 - 1800 = 10,200\)
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- Let’s Work the Remaining Balance for a few months:
 - Your starting balance (after 0 months) is 12,000
 - After 1 month, you owe a payment:
 - Your first payment is 15% of $12,000
 - $0.15 \times 12000 = 1800
 - Remaining Balance (after 1 month):
 - $12,000 - 1800 = 10,200

Another way to think of this, if you paid of 15% of 12000, you have 85% of 12000 remaining
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

Let’s Work the Remaining Balance for a few months:

- Your starting balance (after 0 months) is $12,000
- After 1 month, you owe a payment:
 - Your first payment is 15% of $12,000
 - $0.15 \times 12000 = 1800$
 - Remaining Balance (after 1 month):
 - $12,000 - 1800 = 10,200$
 - Another way to think of this, if you paid off 15% of 12000, you have 85% of 12000 remaining
- Your second payment is 15% of $12,000
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- Let’s Work the Remaining Balance for a few months:
 - Your starting balance (after 0 months) is $12,000
 - After 1 month, you owe a payment:
 - Your first payment is 15% of $12,000
 - $0.15 \times 12000 = 1800
 - Remaining Balance (after 1 month):
 - $12,000 - 1800 = 10,200
 - *Another way to think of this, if you paid of 15% of 12000, you have 85% of 12000 remaining*
 - Your second payment is 15% of $12,000
 - $0.15 \times 10,200 = 1530$
 - Remaining balance (after 2 months):
 - $10200 - 1530 = 8670
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

<table>
<thead>
<tr>
<th>Month(s)</th>
<th>Unpaid Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$12,000</td>
</tr>
<tr>
<td>1</td>
<td>$10,200</td>
</tr>
<tr>
<td>2</td>
<td>$8,670</td>
</tr>
</tbody>
</table>
An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

\[
\begin{array}{|c|c|}
\hline
\text{(after)} & \text{Unpaid Balance} \\
\text{Month(s)} & \\
0 & \$12,000 \\
1 & \$10,200 \\
2 & \$8,670 \\
\hline
\end{array}
\]

\[
\frac{a_1}{a_0} = \frac{10,200}{12,000} = 0.85
\]
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

<table>
<thead>
<tr>
<th>Month(s)</th>
<th>Unpaid Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$12,000</td>
</tr>
<tr>
<td>1</td>
<td>$10,200</td>
</tr>
<tr>
<td>2</td>
<td>$8,670</td>
</tr>
</tbody>
</table>

\[\frac{a_1}{a_0} = \frac{10,200}{12,000} = 0.85 \]
\[\frac{a_2}{a_1} = \frac{8670}{10200} = 0.85 \]
An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

<table>
<thead>
<tr>
<th>Month(s)</th>
<th>Unpaid Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$12,000</td>
</tr>
<tr>
<td>1</td>
<td>$10,200</td>
</tr>
<tr>
<td>2</td>
<td>$8,670</td>
</tr>
</tbody>
</table>

\[
\frac{a_1}{a_0} = \frac{10,200}{12,000} = 0.85
\]

\[
\frac{a_2}{a_1} = \frac{8670}{10200} = 0.85
\]

So this is a geometric sequence:
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

<table>
<thead>
<tr>
<th>Month(s)</th>
<th>Unpaid Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$12,000</td>
</tr>
<tr>
<td>1</td>
<td>$10,200</td>
</tr>
<tr>
<td>2</td>
<td>$8,670</td>
</tr>
</tbody>
</table>

\[
\frac{a_1}{a_0} = \frac{10,200}{12,000} = 0.85
\]

\[
\frac{a_2}{a_1} = \frac{8670}{10200} = 0.85
\]

So this is a geometric sequence:

\[
a_0 =
\]

\[
r =
\]
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

<table>
<thead>
<tr>
<th>Month(s)</th>
<th>Unpaid Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$12,000</td>
</tr>
<tr>
<td>1</td>
<td>$10,200</td>
</tr>
<tr>
<td>2</td>
<td>$8,670</td>
</tr>
</tbody>
</table>

\[
\frac{a_1}{a_0} = \frac{10,200}{12,000} = 0.85
\]

\[
\frac{a_2}{a_1} = \frac{8670}{10200} = 0.85
\]

So this is a geometric sequence:

- \(a_0 = 12000 \)
- \(r = \)
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

<table>
<thead>
<tr>
<th>Month(s) (after)</th>
<th>Unpaid Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$12,000</td>
</tr>
<tr>
<td>1</td>
<td>$10,200</td>
</tr>
<tr>
<td>2</td>
<td>$8,670</td>
</tr>
</tbody>
</table>

\[
\frac{a_1}{a_0} = \frac{10,200}{12,000} = 0.85
\]

\[
\frac{a_2}{a_1} = \frac{8670}{10200} = 0.85
\]

So this is a geometric sequence:

\[
a_0 = 12000
\]

\[
r = 0.85
\]
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

<table>
<thead>
<tr>
<th>Month(s)</th>
<th>Unpaid Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$12,000</td>
</tr>
<tr>
<td>1</td>
<td>$10,200</td>
</tr>
<tr>
<td>2</td>
<td>$8,670</td>
</tr>
</tbody>
</table>

\[
\frac{a_1}{a_0} = \frac{10,200}{12,000} = 0.85
\]

\[
\frac{a_2}{a_1} = \frac{8670}{10200} = 0.85
\]

So this is a geometric sequence:

\[
a_0 = 12000
\]

\[
r = 0.85
\]

So \(a_n = \)
An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

<table>
<thead>
<tr>
<th>Month(s)</th>
<th>Unpaid Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$12,000</td>
</tr>
<tr>
<td>1</td>
<td>$10,200</td>
</tr>
<tr>
<td>2</td>
<td>$8,670</td>
</tr>
</tbody>
</table>

\[
\frac{a_1}{a_0} = \frac{10,200}{12,000} = 0.85
\]

\[
\frac{a_2}{a_1} = \frac{8670}{10200} = 0.85
\]

So this is a geometric sequence:

- \(a_0 = 12000 \)
- \(r = 0.85 \)
- So \(a_n = 12,000(0.85)^n \)
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- So \(a_n = 12,000(0.85)^n \)

- Since \(a_1 \) is balance remaining after month 1, and \(a_2 \) is balance remaining after month 2 ...

- Balance remaining after 18 months is....
An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- So $a_n = 12,000(0.85)^n$

- Since a_1 is balance remaining after month 1, and a_2 is balance remaining after month 2,

- Balance remaining after 18 months is... $a_{18} =$
Real World Examples 1

An interest-free loan of $12,000 requires monthly payments of 15% of the unpaid balance. What is the unpaid or outstanding balance after 18 payments?

- So \(a_n = 12,000(0.85)^n \)

- Since \(a_1 \) is balance remaining after month 1, and \(a_2 \) is balance remaining after month 2

- Balance remaining after 18 months is....
 \[a_{18} = 12000(0.85)^{18} = 643.76 \]
Finding Formula for the Sum of the First n Terms of a Geometric Sequence:

- Find the n^{th} partial sum of the geometric series

\[
\begin{align*}
\sum_{k=0}^{n-1} a_0 \cdot r^k &= a_0 + a_0r + a_0r^2 + \cdots + a_0r^{n-1} \\
&= a_0 \left(\frac{1 - r^n}{1 - r} \right)
\end{align*}
\]
Finding Formula for the Sum of the First n Terms of a Geometric Sequence:

- Find the n^{th} partial sum of the geometric series

\[
\begin{align*}
S_n &= a_0 + a_1 + a_2 + \ldots + a_{n-1} \\
S_n &= a_0 + a_0r + a_0(r)^2 + \ldots + a_0r^{n-1}
\end{align*}
\]
Finding Formula for the Sum of the First n Terms of a Geometric Sequence:

- **Find the n^{th} partial sum of the geometric series**

 \[S_n = a_0 + a_1 + a_2 + \ldots + a_{n-1} \]

- **Now for a clever trick**

 \[r(S_n) = r \left(a_0 + a_0r + a_0(r)^2 + \ldots + a_0r^{n-1} \right) \]

 \[r(S_n) = a_0r + a_0rr + a_0(r)^2r + \ldots + a_0r^{n-1}r \]

 \[r(S_n) = a_0r + a_0(r)^2 + a_0(r)^3 + \ldots + a_0r^n \]
Finding Formula for the Sum of the First n Terms of a Geometric Sequence:

- Find the n^{th} partial sum of the geometric series

\[
S_n = a_0 + a_0r + a_0(r)^2 + \ldots + a_0(r)^{n-1}
\]

- Now for a clever trick

\[
S_n = a_0 + a_0r + a_0(r)^2 + \ldots + a_0(r)^{n-1}
\]

\[
r(S_n) = r\left(a_0 + a_0r + a_0(r)^2 + \ldots + a_0(r)^{n-1}\right)
\]

\[
r(S_n) = a_0r + a_0rr + a_0(r)^2r + \ldots + a_0(r)^{n-1}r
\]

\[
r(S_n) = a_0r + a_0(r)^2 + a_0(r)^3 + \ldots + a_0r^n
\]

- Subtract the 2 Equations....
Finding Formula for the Sum of the First \(n \) Terms of a Geometric Sequence:

- **Subtract the 2 Equations....**

\[
S_n = a_0 + a_0 r + a_0 (r)^2 + \ldots + a_0 r^{n-1} \\
\quad - r(S_n) = -(a_0 r + a_0 (r)^2 + a_0 (r)^3 + \ldots + a_0 r^n) \\
\]

\[
S_n - rS_n = a_0 - a_0 r^n
\]
Finding Formula for the Sum of the First n Terms of a Geometric Sequence:

- **Subtract the 2 Equations....**

\[
S_n = a_0 + a_0r + a_0(r^2) + \ldots + a_0r^{n-1} \\
-rS_n = -\left(a_0r + a_0(r^2) + a_0(r^3) + \ldots + a_0r^n\right)
\]

\[
S_n - rS_n = a_0 - a_0r^n
\]

- **Now a bit of Algebra**
Finding Formula for the Sum of the First n Terms of a Geometric Sequence:

- Subtract the 2 Equations....

\[
S_n = a_0 + a_0r + a_0(r)^2 + \ldots + a_0r^{n-1}
\]

\[
-r(S_n) = -\left(a_0r + a_0(r)^2 + a_0(r)^3 + \ldots + a_0r^n\right)
\]

\[
S_n - rS_n = a_0
\]

- Now a bit of Algebra

\[
S_n - rS_n = a_0 - a_0r^n
\]

\[
S_n(1 - r) = a_0(1 - r^n)
\]

\[
\frac{S_n(1 - r)}{(1 - r)} = \frac{a_0(1 - r^n)}{1 - r}
\]
Finding Formula for the Sum of the First n Terms of a Geometric Sequence:

- **Subtract the 2 Equations....**

$$S_n = a_0 + a_0 r + a_0 (r)^2 + \ldots + a_0 (r)^{n-1}$$

$$- \left(-a_0 r + a_0 (r)^2 + a_0 (r)^3 + \ldots + a_0 (r)^n \right)$$

$$S_n - rS_n = a_0$$

- **Now a bit of Algebra**

$$S_n - rS_n = a_0 - a_0 r^n$$

$$S_n(1 - r) = a_0(1 - r^n)$$

$$\frac{S_n(1 - r)}{(1 - r)} = \frac{a_0(1 - r^n)}{1 - r}$$

$$S_n = \frac{a_0(1 - r^n)}{1 - r}$$
Formula for Partial Sum of Geometric Sequence

The sum of the first n terms of a geometric sequence with first term a_0 and common ratio r is

$$S_n = \frac{a_0(1 - r^n)}{1 - r}$$

As long as r is not equal to 1.
Partial Sum of Geometric Sequence Example:

Find the 20^{th} partial sum of the Geometric Sequence $1000, 1200, 1440, 1728, \ldots$
Partial Sum of Geometric Sequence Example:

- Find the 20^{th} partial sum of the Geometric Sequence $1000, 1200, 1440, 1728, \ldots$
 - Identify a_0
 - Identify r
 - Plug into S_n formula.

$$S_n = a_0 \left(1 - r^n\right)$$

$$S_{20} = 1000 \left(1 - (1.2)^{20}\right)$$

$$S_{20} \approx 186,687.999622 = \$186,687.99$$
Partial Sum of Geometric Sequence Example:

- Find the 20th partial sum of the Geometric Sequence 1000, 1200, 1440, 1728, \ldots
 - Identify \(a_0 = 1000 \)
 - Identify \(r \)
 - Plug into \(S_n \) formula.
Partial Sum of Geometric Sequence Example:

Find the 20^{th} partial sum of the Geometric Sequence 1000, 1200, 1440, 1728, …

- Identify $a_0 = 1000$

- Identify $r \frac{1200}{1000} = 1.2$

- Plug into S_n formula.
Partial Sum of Geometric Sequence Example:

- Find the 20^{th} partial sum of the Geometric Sequence $1000, 1200, 1440, 1728, \ldots$
 - Identify $a_0 = 1000$
 - Identify $r = \frac{1200}{1000} = 1.2, \frac{1440}{1200} = 1.2$
 - Plug into S_n formula.

$$S_n = \frac{a_0(1 - r^n)}{1 - r}$$

$$S_{20} = \frac{1000(1 - (1.2)^{20})}{1 - 1.2}$$

$$S_{20} \approx 186,687.999622 \approx 186,688.00$$
Partial Sum of Geometric Sequence Example:

Find the 20^{th} partial sum of the Geometric Sequence 1000, 1200, 1440, 1728, . . .

- Identify $a_0 = 1000$

- Identify $r = 1.2$

- Plug into S_n formula.

$$\frac{1200}{1000} = 1.2 \quad \frac{1440}{1200} = 1.2$$
Partial Sum of Geometric Sequence Example:

- Find the 20^{th} partial sum of the Geometric Sequence 1000, 1200, 1440, 1728, …

 - Identify $a_0 = 1000$

 - Identify $r = 1.2$

 \[
 \frac{1200}{1000} = 1.2 \quad \frac{1440}{1200} = 1.2
 \]

 - Plug into S_n formula.
 \[
 S_n = \frac{a_0(1-r^n)}{1-r}
 \]

 - $S_{20} = \frac{1000(1-(1.2)^{20})}{1-1.2}$

 - $S_{20} \approx 186,687.999622 \approx 186,688$
Partial Sum of Geometric Sequence Example:

Find the 20^{th} partial sum of the Geometric Sequence $1000, 1200, 1440, 1728, \ldots$

- Identify $a_0 = 1000$
- Identify $r = 1.2$

\[
\frac{1200}{1000} = 1.2 \quad \frac{1440}{1200} = 1.2
\]

- Plug into S_n formula.

\[
S_n = \frac{a_0(1-r^n)}{1-r} = \frac{1000(1-(1.2)^n)}{1-(1.2)}
\]
Partial Sum of Geometric Sequence Example:

- Find the 20^{th} partial sum of the Geometric Sequence $1000, 1200, 1440, 1728, \ldots$

 - Identify $a_0 = 1000$

 - Identify $r = 1.2$

 \[
 \frac{1200}{1000} = 1.2 \quad \frac{1440}{1200} = 1.2
 \]

 - Plug into S_n formula.

 \[
 S_n = \frac{a_0(1-r^n)}{1-r}
 \]

 \[
 S_n = \frac{1000(1-(1.2)^n)}{1-(1.2)}
 \]

 \[
 S_{20} = \frac{1000(1-(1.2)^{20})}{1-(1.2)}
 \]

 \[
 S_{20} \approx \$186,688.999622 \approx \$186,688.00
 \]
Partial Sum of Geometric Sequence Example:

- Find the 20^{th} partial sum of the Geometric Sequence $1000, 1200, 1440, 1728, \ldots$

- Identify $a_0 = 1000$

- Identify $r = 1.2$
 \[
 \frac{1200}{1000} = 1.2 \quad \frac{1440}{1200} = 1.2
 \]

- Plug into S_n formula.
 \[
 S_n = \frac{a_0(1-r^n)}{1-r}
 \]
 \[
 S_n = \frac{1000(1-(1.2)^n)}{1-(1.2)}
 \]
 \[
 S_{20} = \frac{1000(1-(1.2)^{20})}{1-(1.2)}
 \]
 \[
 S_{20} = \$186687.999622 \approx \$186,688.00
 \]
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

- Work out a few months: Remember, we need the index to start at 0.
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

- \textit{Work out a few months:} Remember, we need the index to start at 0.

<table>
<thead>
<tr>
<th>Month</th>
<th>Index</th>
<th>Monthly Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>0</td>
<td>$1,000</td>
</tr>
<tr>
<td>Month 2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Month 3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

- Work out a few months: Remember, we need the index to start at 0.

<table>
<thead>
<tr>
<th>Month</th>
<th>Index</th>
<th>Monthly Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>0</td>
<td>$1,000</td>
</tr>
<tr>
<td>Month 2</td>
<td>1</td>
<td>$1,100</td>
</tr>
<tr>
<td>Month 3</td>
<td>2</td>
<td>$1,210</td>
</tr>
</tbody>
</table>
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

- **Work out a few months:** Remember, we need the index to start at 0.

<table>
<thead>
<tr>
<th>Month</th>
<th>Index</th>
<th>Monthly Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>0</td>
<td>$1,000</td>
</tr>
<tr>
<td>Month 2</td>
<td>1</td>
<td>$1,100</td>
</tr>
<tr>
<td>Month 3</td>
<td>2</td>
<td>$1,210</td>
</tr>
</tbody>
</table>

- Realize this is a Geometric Series
Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24^{th} month? How much profit total profit will the business have earned at the end of 2 years?

- **Work out a few months:** Remember, we need the index to start at 0.

<table>
<thead>
<tr>
<th>Month</th>
<th>Index</th>
<th>Monthly Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>0</td>
<td>$1,000</td>
</tr>
<tr>
<td>Month 2</td>
<td>1</td>
<td>$1,100</td>
</tr>
<tr>
<td>Month 3</td>
<td>2</td>
<td>$1,210</td>
</tr>
</tbody>
</table>

- Realize this is a Geometric Series
 - Identify a_0
 - Identify r
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

- **Work out a few months:** Remember, we need the index to start at 0.

<table>
<thead>
<tr>
<th>Month</th>
<th>Index</th>
<th>Monthly Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>0</td>
<td>$1,000</td>
</tr>
<tr>
<td>Month 2</td>
<td>1</td>
<td>$1,100</td>
</tr>
<tr>
<td>Month 3</td>
<td>2</td>
<td>$1,210</td>
</tr>
</tbody>
</table>

- Realize this is a Geometric Series
 - Identify \(a_0 = 1000 \)
 - Identify \(r \)
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

- Work out a few months: Remember, we need the index to start at 0.

<table>
<thead>
<tr>
<th>Month</th>
<th>Index</th>
<th>Monthly Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>0</td>
<td>$1,000</td>
</tr>
<tr>
<td>Month 2</td>
<td>1</td>
<td>$1,100</td>
</tr>
<tr>
<td>Month 3</td>
<td>2</td>
<td>$1,210</td>
</tr>
</tbody>
</table>

- Realize this is a Geometric Series
 - Identify $a_0 = 1000$
 - Identify $r = 1.1$
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

\[a_0 = 1000 \text{ and } r = 1.1 \]

- How much profit will the business earn in its 24th month?

- How much profit total profit will the business have earned at the end of 2 years?
Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

\[a_0 = 1000 \text{ and } r = 1.1 \]

- **How much profit will the business earn in its 24th month?**
 We want one of the terms of the geometric sequence. This will be answered by an \(a_n \)

- **How much profit total profit will the business have earned at the end of 2 years?**
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

\[a_0 = 1000 \quad \text{and} \quad r = 1.1 \]

- How much profit will the business earn in its 24th month?
 We want one of the terms of the geometric sequence
 This will be answered by an \(a_n \)
 Since the index starts at \(n = 0 \), the 24th term is \(a_{23} \)

- How much profit total profit will the business have earned at the end of 2 years?
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

\[a_0 = 1000 \quad \text{and} \quad r = 1.1 \]

- How much profit will the business earn in its 24th month?
 We want one of the terms of the geometric sequence
 This will be answered by an \(a_n \)
 Since the index starts at \(n = 0 \), the 24th term is \(a_{23} \)
 \[a_{23} = 1000(1.1)^{23} = 8,954.30 \]

- How much profit total profit will the business have earned at the end of 2 years?
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

\[a_0 = 1000 \quad \text{and} \quad r = 1.1 \]

- How much profit will the business earn in its 24th month?

 We want one of the terms of the geometric sequence.
 This will be answered by an \(a_n \).
 Since the index starts at \(n = 0 \), the 24th term is \(a_{23} \).
 \[a_{23} = 1000(1.1)^{23} = 8,954.30 \]

- How much profit total profit will the business have earned at the end of 2 years?

 This will be answered by a partial sum.
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

\[a_0 = 1000 \quad \text{and} \quad r = 1.1 \]

- **How much profit will the business earn in its 24th month?**

 We want one of the terms of the geometric sequence. This will be answered by an \(a_n \).

 Since the index starts at \(n = 0 \), the 24th term is \(a_{23} \):

 \[a_{23} = 1000(1.1)^{23} = 8,954.30 \]

- **How much profit total profit will the business have earned at the end of 2 years?**

 This will be answered by a partial sum. We will answer it with \(S_{24} \).
Real World Examples 2:

Suppose a business makes a $1,000 profit in its first month and has its monthly profit increase by 10% each month for the next 2 years. How much profit will the business earn in its 24th month? How much profit total profit will the business have earned at the end of 2 years?

\[a_0 = 1000 \quad \text{and} \quad r = 1.1 \]

- How much profit will the business earn in its 24th month?
 We want one of the terms of the geometric sequence. This will be answered by an \(a_n \). Since the index starts at \(n = 0 \), the 24th term is \(a_{23} \).
 \[a_{23} = 1000(1.1)^{23} = 8,954.30 \]

- How much profit total profit will the business have earned at the end of 2 years?
 This will be answered by a partial sum. We will answer it with \(S_{24} \).
 \[S_{24} = \frac{1000(1 - 1.1^{24})}{1 - 1.1} = \$79543.02 \]
Shortcuts to Finding r

- Sometimes there is an easier way to find r rather than working out several terms and checking the ratio.

- If each term in the sequence is a certain percent *more* than the previous term:
 \[r = 1 + p \]
 (where p is the percent, converted to a decimal)

- If each term in the sequence is a certain percent *less* than the previous term:
 \[r = 1 - p \]
 (where p is the percent, converted to a decimal)
You start advertising your dog grooming business on a new social network called Woofer. Your advertising cost in January $100. Since the social network is growing in popularity, your advertising cost in February are 8% higher. You assume this pattern will continue, and each month your advertising cost will be 8% higher than the previous month.

1. What are your advertising costs in December?

Let's denote the advertising cost in January as $a_0 = 100$. The common ratio $r = 1.08$. The advertising cost in December (a_{11}) can be calculated as:

$$a_{11} = 100(1.08)^{11} = 233.16$$

2. How much will you spend in advertising over the year?

This is a partial sum, we want S_{12}, the sum of the first 12 terms.

$$S_{12} = 100(1 - (1.08)^{11})/(1 - 1.08) = 1664.55$$
Real World Examples 3

You start advertising your dog grooming business on a new social network called Woofer. Your advertising cost in January $100. Since the social network is growing in popularity, your advertising cost in February are 8% higher. You assume this pattern will continue, and each month your advertising cost will be 8% higher than the previous month.

1. What are your advertising costs in December?

This will be a Geo Series

2. How much will you spend in advertising over the year?
You start advertising your dog grooming business on a new social network called Woofer. Your advertising cost in January $100. Since the social network is growing in popularity, your advertising cost in February are 8% higher. You assume this pattern will continue, and each month your advertising cost will be 8% higher than the previous month.

1. What are your advertising costs in December?
 This will be a Geo Series

 \[a_0 = \text{advert. costs in Jan}, \quad a_2 = \text{advert. costs in Feb} \ldots \]

 \[a_{11} = \text{advertising costs in Dec} \]

2. How much will you spend in advertising over the year?
You start advertising your dog grooming business on a new social network called Woofer. Your advertising cost in January $100. Since the social network is growing in popularity, your advertising cost in February are 8% higher. You assume this pattern will continue, and each month your advertising cost will be 8% higher than the previous month.

1. **What are your advertising costs in December?**
 - This will be a Geo Series
 - \(a_0 = \text{advert. costs in Jan}, \ a_2 = \text{advert. costs in Feb} \ldots \)
 - \(a_{11} = \text{advertising costs in Dec} \)
 - \(a_0 = 100 \) and \(r = 1.08 \)

2. **How much will you spend in advertising over the year?**
Real World Examples 3

You start advertising your dog grooming business on a new social network called Woofer. Your advertising cost in January $100. Since the social network is growing in popularity, your advertising cost in February are 8% higher. You assume this pattern will continue, and each month your advertising cost will be 8% higher than the previous month.

1. What are your advertising costs in December?

 This will be a Geo Series
 \[a_0 = \text{advert. costs in Jan}, \quad a_2 = \text{advert. costs in Feb} \ldots \]
 \[a_{11} = \text{advertising costs in Dec} \]
 \[a_0 = 100 \quad \text{and} \quad r = 1.08 \]
 \[a_{11} = 100(1.08)^{11} = 233.16 \]

2. How much will you spend in advertising over the year?

 \[S_{12} = 100(1 - (1.08)^{11}) \]
 \[= 1664.55 \]
You start advertising your dog grooming business on a new social network called Woofer. Your advertising cost in January $100. Since the social network is growing in popularity, your advertising cost in February are 8% higher. You assume this pattern will continue, and each month your advertising cost will be 8% higher than the previous month.

1. What are your advertising costs in December?
 This will be a Geo Series
 \[a_0 = \text{advert. costs in Jan}, \quad a_2 = \text{advert. costs in Feb} \ldots \]
 \[a_{11} = \text{advertising costs in Dec} \]
 \[a_0 = 100 \quad \text{and} \quad r = 1.08 \]
 \[a_{11} = 100(1.08)^{11} = 233.16 \]

2. How much will you spend in advertising over the year?
 This is a partial sum, we want \[a_0 + a_1 + \cdots + a_{11} \]
You start advertising your dog grooming business on a new social network called Woofer. Your advertising cost in January $100. Since the social network is growing in popularity, your advertising cost in February are 8% higher. You assume this pattern will continue, and each month your advertising cost will be 8% higher than the previous month.

1. What are your advertising costs in December?
 This will be a Geo Series
 \[a_0 = \text{advert. costs in Jan, } a_2 = \text{advert. costs in Feb...} \]
 \[a_{11} = \text{advertising costs in Dec} \]
 \[a_0 = 100 \text{ and } r = 1.08 \]
 \[a_{11} = 100(1.08)^{11} = 233.16 \]

2. How much will you spend in advertising over the year?
 This is a partial sum, we want \[a_0 + a_1 + \cdots + a_{11} \]
 \[S_{12} \text{ will be the answer} \]
Real World Examples 3

You start advertising your dog grooming business on a new social network called Woofer. Your advertising cost in January $100. Since the social network is growing in popularity, your advertising cost in February are 8% higher. You assume this pattern will continue, and each month your advertising cost will be 8% higher than the previous month.

1. What are your advertising costs in December?
 This will be a Geo Series
 \(a_0 = \text{advert. costs in Jan}, \ a_2 = \text{advert. costs in Feb} \)
 \(a_{11} = \text{advertising costs in Dec} \)
 \(a_0 = 100 \) and \(r = 1.08 \)
 \(a_{11} = 100(1.08)^{11} = 233.16 \)

2. How much will you spend in advertising over the year?
 This is a partial sum, we want \(a_0 + a_1 + \cdots + a_{11} \)
 \(S_{12} \) will be the answer
 \[
 S_{12} = \frac{100(1-1.08^{11})}{(1-1.08)} = 1664.55
 \]
A business has a profit of $25,000 in the first year and then loses 5% each year for the next seven years.

1. What is the business’ profit in the 4th year?

2. What is the total profit after 7 years?
Real World Examples 4

A business has a profit of $25,000 in the first year and then loses 5% each year for the next seven years.
This will be a Geo Series. \(a_0 = 25,000 \) and \(r = 0.95 \)

1. What is the business’ profit in the 4th year?

2. What is the total profit after 7 years?
A business has a profit of $25,000 in the first year and then loses 5% each year for the next seven years. This will be a Geo Series. $a_0 = 25,000$ and $r = 0.95$

1. **What is the business’ profit in the 4th year?**
 - We’ll answer with a term of the sequence
 - Since the profit in the first year is a_0, the profit in the 4th year is a_3

2. **What is the total profit after 7 years?**
A business has a profit of $25,000 in the first year and then loses 5% each year for the next seven years. This will be a Geo Series. \(a_0 = 25,000 \) and \(r = 0.95 \)

1. **What is the business’ profit in the 4th year?**
 We’ll answer with a term of the sequence
 Since the profit in the first year is \(a_0 \), the profit in the 4th year is \(a_3 \)
 \[
 a_3 = 25000(0.95)^3 = 21434.38
 \]

2. **What is the total profit after 7 years?**
A business has a profit of $25,000 in the first year and then loses 5% each year for the next seven years. This will be a Geo Series. \(a_0 = 25,000 \) and \(r = 0.95 \)

1. What is the business' profit in the 4th year?
 We'll answer with a term of the sequence
 Since the profit in the first year is \(a_0 \), the profit in the 4th year is \(a_3 \)
 \[
 a_3 = 25000(0.95)^3 = 21434.38
 \]

2. What is the total profit after 7 years?
 Since this is about adding up the profit in each of the first 7 years...
A business has a profit of $25,000 in the first year and then loses 5% each year for the next seven years. This will be a Geo Series. \(a_0 = 25,000 \) and \(r = 0.95 \)

1. What is the business’ profit in the 4th year?
 We’ll answer with a term of the sequence
 Since the profit in the first year is \(a_0 \), the profit in the 4th year is \(a_3 \)
 \[a_3 = 25000(0.95)^3 = 21434.38 \]

2. What is the total profit after 7 years?
 Since this is about adding up the profit in each of the first 7 years...
 We answer with \(S_7 \)
A business has a profit of $25,000 in the first year and then loses 5\% each year for the next seven years. This will be a Geo Series. $a_0 = 25,000$ and $r = 0.95$

1. What is the business’ profit in the 4th year?
 We’ll answer with a term of the sequence
 Since the profit in the first year is a_0, the profit in the 4th year is a_3
 $a_3 = 25000(0.95)^3 = 21434.38$

2. What is the total profit after 7 years?
 Since this is about adding up the profit in each of the first 7 years...
 We answer with S_7
 $S_7 = \frac{25000(1-0.95^7)}{(1-0.95)} = 150,831.35$
Homework

It is NOT in your book.

It IS at the end of the printout on the course website.