• **Inverse Functions**

Suppose f and g are two functions such that

1. $(g \circ f)(x) = x$ for all x in the domain of f and
2. $(f \circ g)(x) = x$ for all x in the domain of g

then f and g are **inverses** of each other and the functions f and g are said to be **invertible**.

• What do we think should be the inverse of the function f that takes an input divides by 2 then adds 3?

Check your guess.

• Not all functions have inverses.

• **Properties of inverse functions:** Suppose f and g are inverse functions.

 – The range of f is the domain of g and the domain of f is the range of g
 – $f(a) = b$ if and only if $g(b) = a$
 – The point (a, b) is on the graph of f is and only if (b, a) is on the graph of g.

• **Uniqueness of Inverse Functions and Their Graphs:** Suppose f is an invertible function.

 – There is exactly one inverse function for f, denoted f^{-1} (read f-inverse)
 – The graph of $y = f^{-1}(x)$ is the reflection of the graph of $y = f(x)$ across the line $y = x$.
Examples

1. Given f is invertible and $f(-3) = 1$, $f(2) = -3$, and $f(4) = 2$
 (a) What is $f^{-1}(-3)$?
 (b) Given that $f(x) = 4x - 1$ is invertible, what is $f^{-1}(7)$?

A function f is said to be one-to-one if f matches different inputs to different outputs. Equivalently, f is one-to-one if and only if whenever $f(c) = f(d)$, then $c = d$.

How to show a function is one-to-one

- Analytically
 * Assume $f(c) = f(d)$
 * using only operations which are reversible simplify the above equation
 (Make sure you don’t introduce extraneous solutions or lose solutions, etc.)
 * If you can conclude $c = d$, then the function is one-to-one.

- Graphically
 The Horizontal Line Test: A function f is one-to-one if and only if no horizontal line intersects the graph of f more than once.

Showing a function is NOT one-to-one

- Analytically
 Guess and check 2 different inputs that produce the same output.
- Graphically
 Show the graph fails the horizontal line test.

Equivalent Conditions for Invertibility: Suppose f is a function. The following statements are equivalent.

- f is invertible
- f is one-to-one
- The graph of f passes the Horizontal Line Test
• Examples Determine analytically if the following functions are one-to-one or not.

1. \(y = x^2 + 3 \)
2. \(y = 2(x - 3) \)

• Steps for finding the Inverse of a One-to-one Function

- Write \(y = f(x) \)
- Interchange \(x \) and \(y \)
- Solve \(x = f(y) \) for \(y \) to obtain \(y = f^{-1}(x) \)

• Examples: Find the inverse of the following one-to-one functions. Check your answers analytically using function composition

1. \(f(x) = \frac{1 - 2x}{3} \)
2. \(f(x) = \frac{-x}{5 + 4x} \)

• Examples Graph the following functions to show they are one-to-one and find their inverses. Check your answers analytically using function composition and graphically.

1. \(y = x^2 + 2x - 3, \quad x \geq -1 \)
2. \(y = \sqrt{x + 2} \)