2.2 Absolute Value Functions

- **The Absolute Value** of a real number \(x \) is given by

\[
|x| = \begin{cases}
-x & \text{if } x < 0 \\
x & \text{if } x \geq 0
\end{cases}
\]

- **Properties of Absolute Values:** Let \(a, b \) and \(x \) be real numbers and let \(n \) be an integer. Then

 - \(|ab| = |a| \cdot |b| \)
 - \(|a^n| = |a|^n \) whenever \(a^n \) is defined
 - \(\frac{|a|}{|b|}, \) provided \(b \neq 0 \)

- **Equality Properties** Suppose \(x, y \) and \(c \) are real numbers.

 - \(|x| = 0 \) if and only if \(x = 0 \).
 - For \(c > 0 \), \(|x| = c \) if and only if \(x = c \) or \(x = -c \).
 - For \(c < 0 \), \(|x| = c \) has no solution.
 - \(|x| = |y| \) if and only if \(x = y \) or \(x = -y \)

1. Solve the following equalities:

 (a) \(|x^2 - 1| = 3\)
 (b) \(8 + |7x - 3| = 4\)
 (c) \(x + |7x - 3| = 4\)
 (d) \(|4x - 1| = |3 - 2x|\)
 (e) *(Optional)* \(|2x| + 1 = x^2\)

2. Graph the following functions (using whichever is appropriate: Transformations from 1.7 or by correctly writing them as piecewise functions and graphing that way)

 (a) \(y = |2x - 3|\)
 (b) \(y = 2x + |x - 2|\)
 (c) *(optional)* \(y = |x - 4| + |x|\)