Math 22: Fall 2015
5.3 Other Algebraic Functions

- Let x be a real number and n a natural number. If n is odd, the **principal nth root of** x, denoted $\sqrt[n]{x}$ is the unique real number satisfying $(\sqrt[n]{x})^n = x$. If n is even, $\sqrt[n]{x}$ is defined similarly provided $x \geq 0$ and $\sqrt[n]{x} \geq 0$.

 The **index** is the number n and the **radicand** is the number x. For $n = 2$, we write \sqrt{x} instead of $\sqrt[2]{x}$.

- **Properties of Radicals:** Let x and y be real numbers and m and n be natural numbers. If $\sqrt[n]{x}$, $\sqrt[n]{y}$ are real numbers, then
 - **Product Rule:** $\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}$
 - **Powers of Radicals** $\sqrt[n]{x^m} = (\sqrt[n]{x})^m$
 - **Quotient Rule:** $\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$, as long as $y \neq 0$
 - If n is odd $\sqrt[n]{x^n} = x$; if n is even, $\sqrt[n]{x^n} = |x|$.

- **Fractional Exponents**
 - $x^{1/n} = \sqrt[n]{x}$ whenever $\sqrt[n]{x}$ is defined.
 - $x^{m/n} = (\sqrt[n]{x})^m$ whenever $(\sqrt[n]{x})^m$ is defined.

- **Steps for Constructing A Sign Diagram for Algebraic Functions**
 Suppose f is an algebraic function.

 1. Place any values excluded from the domain of f on the number line with an ↑ above them.
 2. Find the zeros of f and place them on the number line with the number 0 above them.
 3. Choose a test value in each of the intervals determined in steps 1 and 2.
 4. Determine the sign of $f(x)$ for each test value in step 3, and write that sign above the corresponding interval.
• **Examples:** For the following functions, state their domains and create sign diagrams.

1. \(f(x) = 2x\sqrt{4-x} \)
2. \(f(x) = \sqrt{3 - \sqrt{x+1}} \)

• **Examples:** Solve the following inequalities:

3. (Refer to the previous exercises) \(2x\sqrt{4-x} \leq 0 \)
4. \(x^{4/3} + x^{2/3} \leq 12 \)
Graphs of Even Roots

All graphs contain the points (0, 0) and (1, 1) then it’s easy to find a point (?, 2) if you need a 3rd point.
Graphs of Odd Roots

All graphs contain the points (0, 0) and (1, 1) and (−1, −1)
• **Examples:** Graph the following functions as transformations

5. \(f(x) = 2\sqrt[3]{x + 3} - 1 \)

• **Examples:** More Examples:

6. Solve the inequality \(4(3 - x)^{1/3} \geq x(3 - x)^{-2/3} \)

7. Solve the equation \(\sqrt{6 - x} + 4 = x \)

8. Graph \(f(x) = \sqrt{-x} + 1 \) as a transformation

9. State the domain of \(f(x) = \frac{\sqrt{x^2 - 3x + 7}}{\sqrt{x^2 - 2x - 24}} \)

10. Solve the inequality \(\frac{1}{2}x^{-1/2}(x - 4)^{2/3} + \frac{2}{3}x^{1/2}(x - 4)^{-1/3} < 0 \)

11. Solve the inequality \(\frac{x(x - 1)}{\sqrt{x^2 - 1}} > 0. \)