A Rational Function is a function which is the ratio of polynomial functions. Said differently, r is a rational function if it is of the form

$$r(x) = \frac{p(x)}{q(x)}$$

where p and q are polynomial functions.

Example: Find the domain of the following rational functions, and write them in the form $\frac{p(x)}{q(x)}$ and simplify.

1. $f(x) = \frac{(x - 2)(x + 3)}{(x^2 - 4)(x + 1)}$
2. $f(x) = \left(\frac{3 + x}{x^2 - 1}\right) \div \frac{4x + 1}{x^2 - 1}$
• Asymptotes

- The line \(x = c \) is called a **vertical asymptote** of the graph of a function \(y = f(x) \) if as \(x \to c^- \) or as \(x \to c^+ \), either \(f(x) \to \infty \) or \(f(x) \to -\infty \).

- The line \(y = c \) is called a **horizontal asymptote** of the graph of a function \(y = f(x) \) if as \(x \to -\infty \) or as \(x \to \infty \), \(f(x) \to c \).

• **Examples:** The graph of \(f(x) \) is given below. Determine if there are any vertical or horizontal asymptotes.

3. \(f(x) = \frac{2(x + 1)^2}{(x - 2)(x + 4)} \)

4. \(f(x) = \frac{3x + 9}{x^2 - 9} \)
• **Determining Vertical Asymptotes (and Holes) from the equation of a rational function**

Suppose \(r \) is a rational function which can be written as \(r(x) = \frac{p(x)}{q(x)} \) where \(p \) and \(q \) have no common zeros.

(i.e. \(r(x) = \frac{p(x)}{q(x)} \) is in lowest terms)

Let \(c \) be a real number which is *not* in the domain of \(r \).

- If \(q(c) \neq 0 \), then the graph of \(y = r(x) \) has a hole at \((c, \frac{p(c)}{q(c)})\), aka \((c, r(c))\)
- If \(q(c) = 0 \), then the line \(x = c \) is a vertical asymptote of the graph of \(y = r(x) \).

• **Example:** Find the vertical asymptotes of, and/or holes in, the graphs of the following rational functions.

5. \(r(x) = \frac{x^2 + x - 6}{(2x^2 + 8x - 24)(3x - 7)} \)

• **Determining Horizontal Asymptotes from the equation of a rational function:**

Suppose \(r \) is a rational function and \(r(x) = \frac{p(x)}{q(x)} \), where \(p \) and \(q \) are polynomial functions with leading coefficients \(a \) and \(b \), respectively.

- If the degree of \(p(x) \) is the same as the degree of \(q(x) \), then \(y = \frac{a}{b} \) is the horizontal asymptote of the graph of \(y = r(x) \).
- If the degree of \(p(x) \) is less than the degree of \(q(x) \), then \(y = 0 \) is the horizontal asymptote of the graph of \(y = r(x) \).
- If the degree of \(p(x) \) is greater than the degree of \(q(x) \), then the graph of \(y = r(x) \) has no horizontal asymptotes.

• **Example:** List the horizontal asymptotes, if any, of the graphs of the following functions.

6. \(f(x) = \frac{(2x^2 - 1)(3x + 1)}{7x - 5x^2} \)
7. \(r(x) = \frac{3x^3 + 2x - 1}{(2x - 1)(x + 3)(5x - 4)} \)
8. \(g(x) = \frac{x - 1}{x^2 - 1} \)
Example:

- List the domain of the function
- Find all vertical asymptotes
- Find all holes in the graph
- Find the horizontal asymptote (if it exists)

9. \(f(x) = \frac{4x^2 + 12x}{x^2 + 6x + 9} \)

10. (optional) \(f(x) = \frac{7x^3 + 3x^2 - x + 12}{x^2 - 6x + 13} \)

11. (optional) \(f(x) = \frac{2x^2 - 4x - 16}{x^3 - 4x^2 + 2x - 8} \)