Directions: Please answer the following questions and make sure your answer are legible. You must show your work to receive credit for your answers. You may not use a calculator (or any other technology) on this quiz. Good Luck.

1. (7 points)
 Use the graph of \(y = f(x) \) to answer the following
 \((1.6 \# 58, 59, 63, 69-73) \)
 (a) (Write your answer in interval notation.)
 Find the domain of \(f \). \([-4, 4]\)
 Find the range of \(f \). \([-5, 5]\)
 (b) Find the zeros of \(f \). \(-4, 0, 4\)
 (c) List the intervals where \(f \) is decreasing \((-4, -2) \cup (2, 4)\)
 (d) List the local maximums of \(f \), if any exist None
 (e) List the local minimums of \(f \), if any exist \((-2, -5)\)
 (f) Find the maximum of \(f \) (if it exists) None
 (g) Find the minimum of \(f \) (if it exists) \(f(2) = -5 \)

2. (2 points) Let \(f(x) = \sqrt{x} \). Find a formula for a function \(g \) whose graph is obtained from \(f \) from the given sequence of transformations:
 (1) shift left 3 units; (2) shift down 4 units; (3) vertical stretch by a factor of 2 \((1.7 \# 61) \)
 \(\text{(1)} \quad y = \frac{1}{3} \left(x + 3 \right) \)
 \(\text{(2)} \quad y = 2 \left(f(x-3) \right) - 4 \)
 \(\text{(3)} \quad y = \sqrt{x} - 3 \)

3. (3 points) Find the slope-intercept form of the line which passes through the points \((\frac{1}{2}, \frac{3}{4}) \) and \((\frac{5}{2}, \frac{-7}{4}) \). \((2.1 \# 18) \)
 \[
 m = \frac{\frac{10}{4} - \frac{-2}{4}}{\frac{5}{2} - \frac{5}{2}} = \frac{12}{4} = \frac{3}{1} = \frac{\frac{3}{4}}{\frac{4}{4}} = \frac{-20}{4} = -20
 \]
 \[
 \left(y - \frac{3}{4} \right) = -20 \left(x - \frac{1}{4} \right)
 \]
 \[
 y - \frac{3}{4} = -20x + 10
 \]
 \[
 y = -20x + 10 + \frac{2}{4}
 \]
 \[
 y = -20x + \frac{43}{4}
 \]

Turn over for More Questions.
4. (6 points) Use the given graph of \(y = f(x) \) to graph the transformed function:

\[p(x) = 4 + f(1 - 2x) \] \hspace{1cm} (1.7 \# 48)

\[p(x) = f(-2x + 1) + 4 \]

- Reflect over the \(y \)-axis.
- Shift down 4.

(-3,0) \rightarrow (-1,0) \rightarrow (\frac{1}{2},1) \rightarrow (3,4)

(0,3) \rightarrow (-1,3) \rightarrow (\frac{1}{2},3) \rightarrow (\frac{1}{2},7)

(3,0) \rightarrow (-1,0) \rightarrow (-1,4)

The graph for Ex. 38 - 49

5. (8 points) For \(f(x) = |x + 2| + x \) \hspace{1cm} (2.2 \# 31)

(a) Find the \(x \)-intercepts (if any).

(b) Graph the function.

\[|x + a| = \begin{cases}
-(x + a) & x < -a \\
(x + a) & x \geq -a
\end{cases} \]

\[-x = |x + a|
\]

\[x + 2 = x \] \hspace{1cm} \text{if} \hspace{0.5cm} -x \geq 0

\[x + 2 = -x \] \hspace{1cm} \text{or} \hspace{1cm} x + 2 = -x

\[0 = 2 \]

\[2x = -4 \]

\[x = -2 \]

\[x \neq -2 \]