• Symmetric with respect to the x-axis:

 – A graph is said to be symmetric with respect to the x-axis if for every point (x, y) on the graph, the point $(x, -y)$ is also on the graph

 – To Test: replace y by $-y$ in the equation and simplify. If an equivalent equation results, the equation is symmetric with respect to the x-axis.

 – Note: this can only happen in graphs that are not functions (i.e. they fail the vertical line test).

• Symmetric with respect to the y-axis:

 – A graph is said to be symmetric with respect to the y-axis if for every point (x, y) on the graph, the point $(-x, y)$ is also on the graph

 – To Test: replace x by $-x$ in the equation and simplify. If an equivalent equation results, the equation is symmetric with respect to the y-axis.

 – Note: We will call these Even Functions later.

• Symmetric with respect to the origin

 – A graph is said to be symmetric with respect to the origin if for every point (x, y) on the graph, the point $(-x, -y)$ is also on the graph

 – To Test: replace x by $-x$ and replace y by $-y$ in the equation and simplify. If an equivalent equation results, the equation is symmetric with respect to the y-axis.

 – Note: We will call these Odd Functions later.