6.2 Nullspace

• **Recall: Null Space**
 For A be an $m \times n$ matrix. The nullspace of A, denoted by $\text{nullspace}(A)$ or $\mathcal{N}(A)$, is defined to be the set of all vectors x in \mathbb{R}^n such that $Ax = 0$.

 - The null space is also called the kernel of A.
 - In chapter 4 we proved this is a subspace of \mathbb{R}^n

• **Nullity**
 The dimension of the nullspace of a matrix A is also known as the nullity of A.

 $$\text{nullity}(A) = \dim(\text{nullspace}(A)).$$

• **Left Nullspace**
 Let A be a $m \times n$ matrix. The left nullspace of A is defined to be the nullspace of the $n \times m$ matrix A'.

 - In other words the left nullspace of A is the set of all vectors x in \mathbb{R}^m such that
 $$A'x = 0_{n \times 1}$$
 - (taking the transpose of the above equation)
 $$x^tA = 0_{1 \times n}$$
• Examples

1. For \(A = \begin{bmatrix} -1 & 1 & 1 & 1 & 0 \\ -1 & 2 & 0 & 1 & 2 \\ -3 & 4 & 2 & 3 & 2 \\ 1 & -1 & -1 & 0 & 2 \end{bmatrix} \).

(a) \(\text{nullspace}(A) \) is a subspace of ______.
(b) Find a basis for \(\text{nullspace}(A) \).
(c) What is \(\dim(\text{nullspace}(A)) \)?
(d) What is one vector in \(\text{nullspace}(A) \)?
(e) What is one vector not in \(\text{nullspace}(A) \)?
(f) What is the \(\text{nullity}(A) \)?

2. For \(A = \begin{bmatrix} -1 & 1 & 1 & 1 & 0 \\ -1 & 2 & 0 & 1 & 2 \\ -3 & 4 & 2 & 3 & 2 \\ 1 & -1 & -1 & 0 & 2 \end{bmatrix} \).

(a) The left nullspace of \(A \) is a subspace of ______.
(b) Find a basis for the left nullspace of \(A \).
(c) What is the dimension of the left nullspace of \(A \)?

• Examples

3. Let \(C = \begin{bmatrix} 1 & 2 & 3 & -1 & 0 \\ -1 & -2 & -2 & 1 & 1 \\ 1 & 2 & 2 & -1 & -1 \end{bmatrix} \).

(a) Find a basis for the nullspace of \(C \)
(b) Find a basis for the left nullspace of \(C \)
(c) What is the nullity of \(C \)?
(d) What is the dimension of the nullspace of \(C \)?
(e) What is the dimension of the left nullspace of \(C \)?