5.3 Basis and Dimension

- **Basis**

 Let \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \) be vectors in a vector space \(V \). We define the set of vectors \(\{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \} \) to be a *basis* for the vector space \(V \) if they satisfy the following two conditions:

 - (i) The vectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \) are linearly independent.

 - (ii) Every vector in \(V \) can be written as a linear combination of the vectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \). (in other words \(\text{span}(\{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \}) = V \))

- We're usually concerned about vector spaces which have finitely many vectors in a basis. They are called *finite dimensional vector spaces*.

- Vector spaces like \(C[a, b] \) (continuous functions with domain \([a, b] \) are *infinite dimensional vector spaces*.

- **Examples**

 1. Prove \(\{ \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \} \) is a basis for \(\mathbb{R}^3 \).

 Recall \(\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \).

 2. For \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \),

 Is \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \) is a basis for \(\mathbb{R}^3 \)? Prove or disprove.
• **Standard Bases:**

 - **Standard Basis for** \mathbb{R}^n:

 is $\{e_1, e_2, \ldots, e_n\}$ where

 $e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$, ..., $e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$

 - **Standard Basis for** \mathcal{P}_n:

 is $\{1, x, x^2, \ldots, x^n\}$

• **Example**

 3. Give a basis for $M_{2 \times 3}(\mathbb{R})$.

 4. Give a basis for the vector subspace $V = \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix}$ such that $w = 3z - z$

• **Theorem:** Let $\{v_1, v_2, \ldots, v_k\}$ be a basis for the vector space V. Then any vector u in V can be uniquely expressed as a linear combination of the basis vectors.

 - In other words there are unique scalars c_1, c_2, \ldots, c_k such that

 $u = c_1v_1 + c_2v_2 + \cdots + c_kv_k$.

• **Example**

 5. Prove the above Theorem.
• Example

6. We saw that \[
\begin{bmatrix}
1 & 0 & -1 \\
1 & 2 & 0 \\
0 & -1 & 1
\end{bmatrix}
\] is a basis for \(\mathbb{R}^3\).

Write the vector \[
\begin{bmatrix}
2 \\
-3 \\
1
\end{bmatrix}
\] as a linear combination of these vectors.

• **Thm:** If \(\{v_1, v_2, \ldots, v_k\}\) is a basis for \(V\), than any collection of \(k + 1\) (or more) vectors in \(V\) is linearly dependent.

• **Thm:** If a vector space \(V\) has a basis consisting of finitely many elements, then any two bases for \(V\) must contain the same number of elements.
- **Dimension**
 - A vector space V is called *finite dimensional* if it has a basis consisting of a finite number of elements.
 - The unique number of elements in each basis of V is called the **dimension** of V, written as $\dim(V)$.
 - If V does not have a finite basis, then V is said to be *infinite dimensional*.

- **Thm:** Let V be a vector space and let $\dim(V) = n$. Then any set of n linearly independent vectors must be a basis for V.

- **Example**
 7. What is the dimension of \mathbb{R}^3?
 8. What is the dimension of \mathcal{P}_3?
 9. What is the dimension of $\mathcal{M}_{m\times n}(\mathbb{R})$?
 10. Consider the trivial subspace of \mathbb{R}^4, $V = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$, what is $\dim(V)$?
 11. Which of the following sets form a basis for \mathbb{R}^3?

(a) $\left\{ \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \right\}$

(b) $\left\{ \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} , \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} \right\}$

(c) $\left\{ \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} , \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$

(d) $\left\{ \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} , \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} , \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} \right\}$
How to picture a Basis

• The Standard Basis for \(\mathbb{R}^2 \)

\[e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ in Green and } e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ in Blue} \]

When we think of the vector \(\mathbf{v} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \) (in pink)

we know \(\begin{bmatrix} 3 \\ -1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) this linear combination looks like
• A Different Basis for \mathbb{R}^2: $e_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ in Green and $e_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in Blue

When we think of the vector $v = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ (in pink)

we know $\begin{bmatrix} 3 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ this linear combination looks like
• Yet Another Basis for \mathbb{R}^2:

$e_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ in Green and $e_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ in Blue

When we think of the vector $v = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ (in pink)
we know \[
\begin{bmatrix}
3 \\
-1
\end{bmatrix}
= -1 \begin{bmatrix}
1 \\
3
\end{bmatrix} + 2 \begin{bmatrix}
2 \\
1
\end{bmatrix}
\] this linear combination looks like
• What if you tried to use linearly dependent vectors?

\[e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ in Green, } e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ in Blue, } v = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ in Orange} \]

Give 3 different ways to write \(\begin{bmatrix} 3 \\ -1 \end{bmatrix} \) as a lin. comb. of \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \), \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \), and \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \)

• What if you tried to use vectors that don’t span?

\[v_1 = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} \text{ in Green and } v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ in Blue} \]

Try to write \(\begin{bmatrix} 3 \\ -1 \end{bmatrix} \) as a linear combination of \(\begin{bmatrix} 1 \\ 0.5 \end{bmatrix} \), and \(\begin{bmatrix} 2 \\ 1 \end{bmatrix} \)

• These are why we require a Basis to both Linearly Independent and Spanning.