3.4 Elementary Matrices and Matrix Inverse

- A \(n \times n \) **elementary matrix** is a matrix which is obtained from the \(n \times n \) identity matrix \(I_{n \times n} \) by a single elementary row operation.

- **Elementary Row Operations**
 - **Interchanging the \(i \)-th and \(j \)-th rows of a matrix.**
 Denoted \(R_i \leftrightarrow R_j \)
 - **Multiplying a row by an non-zero scalar.**
 \(R_i \rightarrow cR_i \) denotes multiplying Row \(i \) by the scalar \(c \)
 - **Adding a multiple of one row to another**
 \(R_j \rightarrow R_j + cR_i \) denotes when he \(i \)-th row is multiplied by \(c \) and the result is added to the \(j \)-th row.

- **Examples** Which of the following are elementary matrices?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-3</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-3</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>-3</td>
</tr>
</tbody>
</table>
• **Example**

6. Consider the Elementary Matrix \(E = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

(a) What elementary row operation did this elementary matrix come from?

(b) Multiply \(EA \) for \(A = \begin{bmatrix} 1 & -2 & 0 & 4 \\ -2 & 3 & 1 & 0 \\ 6 & 7 & 8 & 9 \end{bmatrix} \)

(c) Now, do the row operation from part (a) to matrix \(A \).

• **Elementary matrices and row operations**

Let \(E \) be an elementary matrix, that is obtained from \(I_{n \times n} \) by an elementary row operation. Let \(A \) be any \(n \times n \) matrix. Then \(EA \) is the matrix that is obtained from \(A \) by applying the same elementary row operation.

• **Inverse matrix**

Let \(A \) be a square matrix of size \(n \times n \). We say that the matrix \(A \) is invertible or *non-singular* if there exists a \(n \times n \) matrix \(B \) such that \(AB = BA = I_{n \times n} \)

In such a case the matrix \(B \) is called the *inverse of the matrix \(A \).*

• **Example** Determine if either of the following matrices is an inverse for the matrix \(A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix} \)

7. \(B = \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix} \)

8. \(B = \begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix} \)

• **Thm** If \(A \) is invertible, then the inverse of \(A \) is unique.
• **Properties of Matrix Inverse**

 – If A is invertible, then so is A^{-1}, and

 $$(A^{-1})^{-1} = A$$

 – If A is invertible, and if $c \neq 0$ is any scalar, then

 $$(cA)^{-1} = \frac{1}{c}A^{-1}$$

 – If A and B are invertible $n \times n$ matrices, then so is the product AB. Furthermore,

 $$(AB)^{-1} = B^{-1}A^{-1}$$

 – If A is invertible, then so is A^t and

 $$(A^t)^{-1} = (A^{-1})^t$$

• **Example**

 9. Simplify $(A^{-1}B)^{-1}(A^{-1}B^{-1}A^2)^{-1}$

 10. Simplify $A(AB)^t(AB^2A^t)^{-1}A$

• **Invertible Matrices and Systems of linear equations**

 If A is invertible then the system of equations $Ax = b$ has a unique solution given by $x = A^{-1}b$

• **Examples** Solve the given systems of linear equations. You may want to use question 7 or 8 to help you.

 11. \[
 \begin{bmatrix}
 1 & 2 \\
 2 & 6
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 \\
 1
 \end{bmatrix}
 \]

 12. \[
 \begin{bmatrix}
 1 & 2 \\
 2 & 6
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 -2 \\
 4
 \end{bmatrix}
 \]
• **Left and Right Inverses**

 – We say that a $m \times n$ matrix A (not necessarily square) has a **left inverse** if there exists an $n \times m$ matrix B such that $BA = I_{n \times n}$

 – Similarly a $m \times n$ matrix A (not necessarily square) has a **right inverse** if there exists a $n \times m$ matrix C such that $AC = I_{m \times m}$

• **Thm** If a matrix is square, either a left or right inverse will be an inverse

• **Theorem:** Let A be an $n \times n$ matrix. Then the following statements are equivalent.

 – (1) There exists a $n \times n$ matrix B such that $BA = I_{n \times n}$, i.e. the matrix A has a left inverse B.

 – (2) The system of homogeneous equations $Ax = 0$ has only the trivial solution $x = 0$.

 – (3) The matrix A can be row reduced to an echelon matrix with n pivots, i.e. the rank (number of pivot elements) of A is n.

 – (4) The system of equations $Ax = b$ has a solution (is consistent) for all vectors b in \mathbb{R}^n. For each such b, the solution vector is unique.

 – (5) The matrix A has a right inverse.

 – (6) The matrix A is invertible, i.e. there exists a unique matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$.

• **Examples:** Note that the matrix $B = \begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix}$ is from example 8

 13. How many solutions does $\begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix} x = \begin{bmatrix} 1 \\ -7 \end{bmatrix}$ have?

 14. How many solutions does $\begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.931 \\ 3.853 \end{bmatrix}$ have?

 15. Find all solutions to $\begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix} x = 0$.

 16. How many pivots are in an REF of $\begin{bmatrix} 3 & -1 \\ -1 & 0.5 \end{bmatrix}$?
Finding the Inverse of a Matrix

- If A is an $n \times n$ matrix whose RREF is I_n, let E_1, E_2, \ldots, E_n be the matrices corresponding to the row operations that reduce A to the identity

$$E_k \cdots E_2 E_1 A = I$$

- So $(E_k \cdots E_2 E_1)A = I$, therefore $(E_k \cdots E_2 E_1) = A^{-1}$
- Or $(E_k \cdots E_2 E_1)I = A^{-1}$
- *All we need to do to find A^{-1} is do the exact same row operations on I that we did to A to reduce it to I_n*

Finding the Inverse of A

- For A an $n \times n$ matrix.
- Create a augmented matrix $[A | I_n]$
- Reduce this matrix to RREF
 * IF the left side has n pivots (i.e. if the left side is I_n), then A is invertible and the right hand side is A^{-1}.
 * IF the left side has less than n pivots (isn’t I_n), then A is not invertible.

Vocabulary:

For A an $n \times n$ matrix,
- If A^{-1} does not exist, we say A is singular (i.e. not-invertible)
- If A^{-1} exists, we say A is non-singular

Examples: Find the inverse of the given matrix, if it exists.

17. $A = \begin{bmatrix} 2 & 0 \\ -1 & 2 \end{bmatrix}$
18. $A = \begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}$
19. $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 0 & 3 & 0 \end{bmatrix}$
20. (optional) $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ -1 & -2 & 0 & 1 \end{bmatrix}$
• **Example:** *Start/set up* the following.

21. For \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), and \(B = \begin{bmatrix} -3 & 4 \\ 5 & -18 \end{bmatrix} \), find all \(2 \times 2 \) matrices \(X \) satisfying:

\[
AX + 2X = B
\]