3.1 Matrix Arithmetic

• **Matrix** is a rectangular array of real (or complex) numbers.

• **Matrix Notation**

 - The size of a matrix is \(m \times n \) when it has \(m \) rows and \(n \) columns.

 - The set of all real \(m \times n \) matrices is denoted \(M_{m \times n}(\mathbb{R}) \).

 - A **square matrix** is an \(n \times n \) matrix.

 - For \(A \) a matrix \((A)_{ij}\) denotes the element in the \(i \)-th row and \(j \)-th column.

 - Two matrices \(A = [a_{ij}] \) and \(B = [b_{ik}] \) are **equal** if they are the same size and \(a_{ij} = b_{ij} \) for all \(i \) and \(j \).

 - The \(m \times n \) **Zero Matrix** is the \(m \times n \) matrix where every entry is 0, denoted \(0_{m \times n} \).

• **Matrix Addition**

 If \(A = [a_{ij}] \) and \(B = [b_{ij}] \) are both \(m \times n \) matrices, then their sum \(A + B \) is also an \(m \times n \) matrix defended by

 \[
 (A + B)_{ij} = [a_{ij} + b_{ij}]
 \]

 - In other words: we add matrices component wise
 - 2 matrices *must* be the same size to be added
 - If 2 matrices are different sizes, their sum is undefined (DNE)
• **Scalar Multiplication** (of a matrix)

 If $A = [a_{ij}]$ is an $m \times n$ matrix and c is any scalar, then cA is an $m \times n$ matrix defined by

 $$[cA]_{ij} = ca_{ij}$$

 – In other words: when multiplying a matrix A by scalar c, multiply each component of A by c

• **Examples:** Do the indicated operation(s)

 1. $\begin{bmatrix} 1 & 2 \\ 0 & -3 \\ 5 & 10 \\ -1 & 6 \end{bmatrix} + \begin{bmatrix} 0 & 9 \\ 1 & 1 \\ -3 & -4 \\ 10 & 0 \end{bmatrix}$

 2. $\begin{bmatrix} 1 & 2 \\ 0 & -3 \\ 5 & 10 \\ -1 & 6 \end{bmatrix} + \begin{bmatrix} 0 & 9 & 1 \\ 1 & 1 & 1 \\ -3 & -4 & -5 \\ 10 & 0 & 3 \end{bmatrix}$

 3. $-2 \begin{bmatrix} 3 & -1 & -1 \\ 0 & 5 & 7 \end{bmatrix}$

 4. $3 \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \end{bmatrix} - \begin{bmatrix} 5 & 0 & -2 \\ 1 & 8 & \frac{1}{2} \end{bmatrix}$
• Properties of Matrix Addition and Scalar Multiplication

Let A, B, C be $m \times n$ matrices, and b, c be scalars. Then

- $A + (B + C) = (A + B) + C$ (Matrix addition is associative).
- $A + B = B + A$ (Matrix addition is commutative).
- $A + 0 = 0 + A = A$ (Existence of zero matrix).
- $A + (-A) = A - A = 0$ (Existence of additive inverse).

In the language of abstract algebra, the above properties make the set of $m \times b$ matrices with matrix addition a commutative group.

- $1A = A$ (Identity element for scalar multiplication).
- $(bc)A = b(cA)$ (Associative property of scalar multiplication).
- $c(A + B) = cA + cB$ (Distributive property of scalar mult. with respect to matrix addition).
- $(b + c)A = bA + cA$ (Distributive property of scalar multi. with respect to scalar addition).

• Example Do the indicated operations(s)

For $A = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -2 & -2 \\ 5 & 3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$

5. $-2(3A)$
6. $(2 - 5)(A + B) + 7(A + B) - 5(A - A)$