2.1 Row echelon form of a matrix

- System of \(m \) linear equations in \(n \) variables (unknowns)

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]

where the coefficients \(a_{ij} \) are real numbers.

- Using Matrix Notation

\[
Ax = b
\]

or

\[
\begin{bmatrix}
 a_{11} & a_{12} & + \cdots + a_{1n} \\
 a_{21} & a_{22} & + \cdots + a_{2n} \\
 \vdots & \vdots & \vdots \\
 a_{m1} & a_{m2} & + \cdots + a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{bmatrix}
\]

- we’ll often use \(x = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix} \) and \(b = \begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{bmatrix} \)

- we call \(A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \vdots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} \), the Matrix of Coefficients of the system of linear equations

- Augmented Matrix

\[
[A|b] =
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
 a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\
 \vdots & \vdots & \cdots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn} & b_n
\end{bmatrix}
\]
• **Example**

1. Write the augmented matrix associated with the system of equations:

 (a) \[
 \begin{align*}
 3x - 100y + 4z &= 6 \\
 -9.2x + 11z &= 17
 \end{align*}
 \]

 \[
 \begin{align*}
 -3x_1 - 3x_2 + \frac{2}{5}x_3 + x_4 &= 0 \\
 7x_1 + 1x_2 - x_3 &= 10 \\
 \frac{1}{2}x_1 + 7x_2 + 2x_3 + 6x_4 &= -\frac{3}{8}
 \end{align*}
 \]

 Note: you were NOT asked to solve this system...

• **Solving a System of Linear Equations:** The system remains unchanged if we:

 – Switch the position of any 2 rows
 – Multiply any equation by a non-zero constant
 – Take a multiple of one equation and add it to another

• **Elementary Row Operations:**

 – **Interchanging the \(i \)-th and \(j \)-th rows of a matrix.**
 Denoted \(R_i \leftrightarrow R_j \)

 – **Multiplying a row by an non-zero scalar.**
 \(R_i \rightarrow cR_i \) denotes multiplying Row \(i \) by the scalar \(c \)

 – **Adding a multiple of one row to another**
 \(R_j \rightarrow R_j + cR_i \) denotes when he \(i \)-th row is multiplied by \(c \) and the result is added to the \(j \)-th row.

• A matrix \(A \) is **row equivalent** to a matrix \(B \), if \(B \) can be obtained from \(A \) by elementary row operations.

• Let \(Ax = b \) and \(A'x = b' \) be two systems of linear equations. If the augmented matrices \([A|b]\) and \([A'|b']\) are row equivalent, then the two systems \(Ax = b \) and \(A'x = b' \) have the same solution vectors.
• **Row Echelon Form** A matrix A is in row echelon form if the following conditions are satisfied.

 – All rows consisting entirely of zeros (if any) appear at the bottom of A.
 – The first (from the left) non-zero entry of a non-zero row is called a *pivot*. In two successive rows the pivot entry of the lower row occurs to the right of the pivot entry for the higher row.

• **Example:**

 2. Which of the following matrices are in Row Echelon Form?

 (a) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{bmatrix}$

 (b) $\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

 (c) $\begin{bmatrix} 0 & 0 & 0 \\ 5 & \frac{2}{5} & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$

 (d) $\begin{bmatrix} -3 & 4 & 3.2 & 0 & \pi & 2 \\ 0 & 0 & 2 & -1 & 0 & 11 \\ 0 & 0 & 0 & 7 & 7.7 & 7.77 \end{bmatrix}$

 (e) $\begin{bmatrix} 0 & -2 & 4 \\ 0 & 0 & 23 \\ 0 & 0 & 0 \end{bmatrix}$

 3. Use row operations to find a Row Echelon matrix that is Row Equivalent to the matrix $M = \begin{bmatrix} 0 & 1 & 1 & 3 \\ 1 & 2 & 1 & 0 \\ 2 & -2 & 0 & -2 \end{bmatrix}$
- **Gaussian Elimination**: An algorithm for transforming any matrix into a Row Echelon Form that is row equivalent to the original matrix.

 - Step 1: Locate the first (leftmost) pivot column (non-zero column). If necessary, interchange rows so that a Pivot is on top of that column.
 - Step 2: (optional) Normalize so the pivot is 1
 - Step 3: Zero out all entries in the pivot column below the pivot entry. So this by adding suitable multiples of the pivot row to each row below
 - Step 4: Mentally ignore the pivot row(s) on top of the matrix, and proceed to Step 1 for the remaining matrix.

- **Example**

 4. Use row operations to find a Row Echelon matrix that is Row Equivalent to the matrix
 \[
 \begin{bmatrix}
 2 & -1 & 4 \\
 4 & -1 & 8 \\
 -1 & 1 & -2 \\
 \end{bmatrix}
 \]

 Hint: Gaussian Elimination helps you do this efficiently

 5. Use row operations to find a Row Echelon matrix that is Row Equivalent to the matrix
 \[
 \begin{bmatrix}
 3 & 0 & -3 & 0 & 1 \\
 1 & 2 & -1 & -2 & 3 \\
 -6 & 0 & 6 & 2 & -4 \\
 \end{bmatrix}
 \]
• **True/False?** and explain why.

 – If matrix A is row equivalent to matrix B then B is row equivalent to A.

 – If A is row equivalent to matrix B and B is row equivalent to Matrix C, then A is row equivalent to C.

 – The Row Echelon form of a matrix is unique.

• **Thm:** Let A and B be two row echelon matrices which are row equivalent to each other. Then the i-th column of A is a pivot column if and only if the i-th column of B is also a pivot column.

 In other words, if two matrices are row equivalent, they will have exactly the same pivot columns.