Midterm 2 Questions

• Note: Proofs and theory are MUCH MORE a part of chapters 4-7 than they were chaps 1-3.

• Expect proofs! and expect T/F and/or give an example of... type questions to test your grasp of theory.

• Once again the majority of the test will be ‘long answer’ type questions that look similar to HW questions.

• The remainder will be short answer questions. Here is a guide of some of the types of short answer question(s) you may be asked.

• Things not on this list ARE fair game for the test.

Chapter 4

1. Most important HW type questions

 (a) Do part of the proof that \((L, \mathcal{M}_{m\times n}(\mathbb{R}), \mathcal{P}_n)\) is a vector space.

 (b) Prove or disprove \(W\) is a subspace of “blah blah blah.”

2. True/False

 (a) True/False: Every vector space has a zero vector.

 (b) True/False: For \(V\) a vector space, the zero vector of \(V\) is unique.

 (c) True/False: For \(u, v, w\) any vectors in a vector space \(V\), if \(u + v = w + v\), then \(u = w\).

 (d) True/False: For \(a, b\) any scalars and \(u\) any vector in a vector space \(V\), \((ab)u = a(bu)\)

 (e) True/False: For \(a\) any scalar and \(u, v\) any vector in a vector space \(V\), \((au)v = a(uv)\)

 (f) True/False: Every vector space is closed under vector addition.

 (g) True/False: Every subspace \(W\) of a vector space \(V\) contains the zero vector of \(V\).

3. Give an example of the following:

 (a) A proper subspace of \(\mathbb{R}^2\).

 (b) A proper subspace of \(\mathbb{R}^4\).

 (c) A proper subspace of \(\mathcal{M}_{3\times 2}(\mathbb{R})\).

 (d) A proper subspace of \(\mathcal{M}_{4\times 4}(\mathbb{R})\).

 (e) A proper subspace of \(\mathcal{P}_3\).

 (f) A proper subspace of \(L\).

 (g) A proper subspace of \(C[a, b]\).

 (h) A subset of \(\mathbb{R}^2\) that is NOT a subspace.

 (i) A subset of \(\mathbb{R}^4\) that is NOT a subspace.

 (j) A subset of \(\mathcal{M}_{3\times 2}(\mathbb{R})\) that is NOT a subspace.

 (k) A subset of \(\mathcal{P}_3\) that is NOT a subspace.
Chapter 5

4. Most important HW type questions

(a) Is (this set of vectors) linearly dependent or independent?
 i. If it’s linearly dependent find an explicit non-trivial linear relationship between them.

(b) Is \(w \) in the span of \(v_1, \ldots, v_k \)? if yes, write \(w \) as a linear combination of \(v_1, \ldots, v_k \).

(c) Give a basis for.... (like 9-13)

(d) Is (this set of vectors) a basis for (this vector space)?

5. True/False

(a) True/False: For any vectors \(v_1, \ldots, v_k \) in a vector space \(V \), \(\{v_1, \ldots, v_k\} \) is a subspace of \(V \).

(b) True/False: For any vectors \(v_1, \ldots, v_k \) in a vector space \(V \), \(\text{span}(\{v_1, \ldots, v_k\}) \) is a subspace of \(V \).

(c) True/False: For any vectors \(v_1, \ldots, v_k \) in a vector space \(V \), the dimension of \(\text{span}(\{v_1, \ldots, v_k\}) \) is \(k \).

(d) True/False: For any vectors \(v_1, \ldots, v_k \) in a vector space \(V \), if \(\text{span}(\{v_1, \ldots, v_k\}) \) is a subspace, then \(\{v_1, \ldots, v_k\} \) are linearly independent.

(e) True/False: For any vectors \(v_1, \ldots, v_k \) in a vector space \(V \), if \(\{v_1, \ldots, v_k\} \) form a basis for \(\text{span}(\{v_1, \ldots, v_k\}) \), then \(\{v_1, \ldots, v_k\} \) are linearly independent.

(f) True/False: For a fixed vector space \(V \), there is only one basis for \(V \).

(g) True/False: For a fixed finite dimensional vector space \(V \), every basis of \(V \) contains the same number of elements.

(h) True/False: Every set of 1 vector in \(\mathbb{R}^2 \) are linearly independent.

(i) True/False: Every set of 2 vectors in \(\mathbb{R}^2 \) are linearly independent.

(j) True/False: Every set of 2 vectors in \(\mathbb{R}^2 \) forms a basis for \(\mathbb{R}^2 \).

(k) True/False: Every set of 3 vectors in \(\mathbb{R}^2 \) spans \(\mathbb{R}^2 \).

(l) True/False: Every set of 2 linearly independent vectors in \(\mathbb{R}^2 \) forms a basis for \(\mathbb{R}^2 \).

(m) True/False: Every set of 2 linearly independent vectors in \(\mathcal{P}_2 \) forms a basis for \(\mathcal{P}_2 \).

(n) True/False: \(\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \) is a basis for \(\mathbb{R}^2 \).

(o) True/False: \(\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \) is a basis for \(\mathbb{R}^3 \).

(p) True/False: For \(v_1, v_2 \) vectors in a vector space \(V \), if \(v_1 \) and \(v_2 \) aren’t scalar multiples of each other, then \(\{v_1, v_2\} \) are linearly independent.

(q) True/False: For \(v_1, v_2, v_3 \) vectors in a vector space \(V \), if none of the vectors is a scalar multiple of any of the other vectors, then \(\{v_1, v_2, v_3\} \) are linearly independent.
(r) True/False: For v_1, v_2, v_3 vectors in a vector space V, v_2 is in span$\{v_1, v_2, v_3\}$.

(s) True/False: For v_1, v_2, v_3 vectors in a vector space V, 0 is in span$\{v_1, v_2, v_3\}$.

(t) True/False: For v_1, v_2, v_3 vectors in a vector space V, $7v_1 + 13v_2 - \frac{1}{3}v_3$ is in span$\{v_1, v_2, v_3\}$.

(u) True/False: For v_1, v_2, v_3 vectors in a vector space V, $a v_1 + b v_2 + c v_3 = 1v_1 + 2v_2 + 3v_3$ then $a = 1, b = 2$ and $c = 3$.

6. Give an example of the following, (or state that it’s impossible)

(a) Three different bases for \mathbb{R}^2.

(b) Three different bases for $\mathcal{M}_{2\times2}(\mathbb{R})$.

(c) A basis for \mathbb{R}^3 containing the vector $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

(d) A set of 2 linearly independent vectors in \mathbb{R}^3

(e) A set of 3 linearly independent vectors in \mathbb{R}^3

(f) A set of 4 linearly independent vectors in \mathbb{R}^3

(g) A set of 2 linearly dependent vectors in \mathbb{R}^3

(h) A set of 3 linearly dependent vectors in \mathbb{R}^3

(i) A set of 4 linearly dependent vectors in \mathbb{R}^3

(j) A set of 2 vectors in \mathcal{P}_2 that does not form a basis for \mathcal{P}_2.

(k) A set of 3 vectors in \mathcal{P}_2 that does not form a basis for \mathcal{P}_2.

(l) A set of 4 vectors in \mathcal{P}_2 that does not form a basis for \mathcal{P}_2.

(m) A basis for \mathbb{R}^3 containing 2 vectors

(n) A basis for \mathbb{R}^3 containing 3 vectors

(o) A basis for \mathbb{R}^3 containing 4 vectors

(p) A vector space of dimension 5

(q) A vector space of dimension 100

(r) A subspace of \mathbb{R}^3 with dimensions 0

(s) A subspace of \mathbb{R}^3 with dimensions 1

(t) A subspace of \mathbb{R}^3 with dimensions 2

(u) A subspace of \mathbb{R}^3 with dimensions 3

(v) A subspace of \mathbb{R}^3 with dimensions 4

(w) 4 different vectors in span$\begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

(x) A vector in \mathbb{R}^4 NOT in span$\begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.
Chapter 6

7. Most important HW type questions

(a) For matrix $A =$
 i. Find a basis for each of the 4 fundamental subspaces
 ii. Find the dimension of each of the 4 fundamental subspaces
 iii. Find $\text{rank}(A)$, $\text{nullity}(A)$

(b) 17, 18, 19, 23 are good theory/short answer questions
(c) 16 is a good question.
(d) You could be asked things about $\text{rowspace}(A^t)$, $\text{colspace}(A^t)$, $\text{nullspace}(A^t)$, $\text{leftnullspace}(A^t)$

8. Here is an $m \times n$ matrix A, and an REF form of $[A|I_m]$,

(a) Find a basis for each of the 4 fundamental subspaces
(b) Find the dimension of each of the 4 fundamental subspaces
(c) Find $\text{rank}(A)$, $\text{nullity}(A)$

9. Here is an $m \times n$ matrix A, and an REF form of A, along with an REF form of A^t,

(a) Find a basis for each of the 4 fundamental subspaces
(b) Find the dimension of each of the 4 fundamental subspaces
(c) Find $\text{rank}(A)$, $\text{nullity}(A)$

10. (a) For A an $m \times n$ matrix...
 i. True/False: $\text{colspace}(A) = \text{rowspace}(A)$
 ii. True/False: $\text{colspace}(A) = \text{rowspace}(A^t)$
 iii. True/False: $\text{colspace}(A) = \text{colspace}(A^t)$
 iv. True/False: $\text{colspace}(A) = \text{nullspace}(A)$
 v. True/False: $\text{colspace}(A) = \text{nullspace}(A^t)$
 vi. True/False: $\text{colspace}(A) = \text{nullity}(A)$
 vii. True/False: $\text{colspace}(A) = \text{rank}(A)$
 viii. True/False: $\dim(\text{colspace}(A)) = \text{nullity}(A)$
 ix. True/False: $\dim(\text{colspace}(A)) = \text{rank}(A)$
 x. True/False: $\dim(\text{nullspace}(A)) = \text{nullity}(A)$
 xi. True/False: $\dim(\text{nullspace}(A)) = \text{rank}(A)$
 xii. True/False: $\text{rowspace}(A)$ is closed under vector addition.
 xiii. True/False: $\text{rowspace}(A)$ is a subspace of \mathbb{R}^m
 xiv. True/False: $\text{rowspace}(A)$ is a subspace of \mathbb{R}^n
 xv. True/False: $\text{colspace}(A)$ is a subspace of \mathbb{R}^m
 xvi. True/False: $\text{colspace}(A)$ is a subspace of \mathbb{R}^n
 xvii. True/False: $\text{colspace}(A^t)$ is a subspace of \mathbb{R}^m
 xviii. True/False: $\text{colspace}(A^t)$ is a subspace of \mathbb{R}^n
 xix. True/False: $\text{colspace}(A) + \text{rowspace}(A) = n$
xx. True/False: \(\dim(\text{colspan}(A)) + \dim(\text{rowspan}(A)) = n \)

xxi. True/False: \(\dim(\text{colspan}(A)) + \dim(\text{nullspace}(A)) = m \)

xxii. True/False: \(\dim(\text{colspan}(A)) + \dim(\text{nullspace}(A)) = n \)

xxiii. True/False: \(\dim(\text{rowspan}(A)) + \dim(\text{nullspace}(A)) = m \)

xxiv. True/False: \(\dim(\text{rowspan}(A)) + \dim(\text{nullspace}(A)) = n \)

xxv. True/False: \(\dim(\text{left nullspace}(A)) = m - \text{rank}(A) \)

xxvi. True/False: \(\dim(\text{left nullspace}(A)) = n - \text{rank}(A) \)

xxvii. True/False: \(\text{rank}(A) + \text{nullity}(A) = m \)

xxviii. True/False: \(\text{rank}(A) + \text{nullity}(A) = n \)

(b) True/False: Every subspace of \(\mathbb{R}^4 \) is the column space of some matrix \(A \).

11. Give an example of the following (or explain why it’s impossible)

(a) A matrix \(A \) where the rowspace(\(A \)) and colspace(\(A \)) have the same dimension

(b) A matrix \(A \) where the rowspace(\(A \)) and colspace(\(A \)) are the same subspace of \(\mathbb{R}^n \)

(c) A matrix \(A \) where the rowspace(\(A \)) and colspace(\(A \)) have different dimensions

(d) A matrix \(A \) where the rowspace(\(A \)) and colspace(\(A \)) are different subspaces.

(e) An \(n \times n \) matrix \(A \) where nullspace(\(A \)) is the trivial subspace.

(f) An \(m \times n \) matrix \(A \) where nullspace(\(A \)) is the trivial subspace.

(g) A square matrix \(A \) where nullspace(\(A \)) and left nullspace(\(A \)) have the same dimension.

(h) A square matrix \(A \) where nullspace(\(A \)) and left nullspace(\(A \)) have different dimensions.

(i) A non-square matrix \(A \) where nullspace(\(A \)) and left nullspace(\(A \)) have the same dimension.

(j) A non-square matrix \(A \) where nullspace(\(A \)) and left nullspace(\(A \)) have different dimensions.

(k) A matrix \(A \) where rowspace(\(A \)) and nullspace(\(A \)) have the same dimension.

(l) A matrix \(A \) where rowspace(\(A \)) and nullspace(\(A \)) have different dimension.

(m) A matrix \(A \) where rank(\(A \)) = nullity(\(A \))

(n) A matrix \(A \) where rank(\(A \)) < nullity(\(A \))

(o) A matrix \(A \) where rank(\(A \)) > nullity(\(A \))

(p) A matrix \(A \) where nullity(\(A \)) = 0

(q) A matrix \(A \) where dim(left nullspace(\(A \)) = 0

(r) A matrix \(A \) where rank(\(A \)) = 0

Chapter 7

12. Most important HW type questions

(a) Here’s a function \(T \), determine if \(T \) is a linear transformation. if it is, find its matrix relative to (some basis)
 These are like 1-8 and 14-21

(b) Something like 9, 10, 11

(c) Something like 22-25