Effectiveness (1.7)

Question
Given Σ and τ, can we "decide" whether $\Sigma \models \tau$ (or $\Sigma \not\models \tau$) using an "effective procedure"?

Informally, an effective procedure must meet the following conditions:

1. It is given by a finite set of instructions. (Think computer program or instructions for a human assistant who doesn't know math)

2. They must be mechanically implemented. (No intelligence is assumed on the part of the machine/person following the instructions. Also, no randomness, e.g., coin-flipping, is used.)

3. After a finite number of steps it produces yes/no.

Note: There is no upper bound on
- the # of steps
- the size of the instructions
- the amount of time it takes
- the amount of resources (e.g., computer memory)
Thm 17B
There is an effective procedure for deciding whether an expression is a wff.

Proof See algorithm in §1.3.

Remk Since we have countably infinitely many sentence symbols, we can replace, say, A_6 with $A^{'''''}$. Then we have only the symbols ($,)$, \land, \lor, \rightarrow, \leftrightarrow, A, $'$, which we can identify with $0-9$.

Def A set of expressions Σ is decidable if there is an effective procedure that, given an expression α, will decide whether or not $\alpha \in \Sigma$.

Example: The set of wffs is decidable. The set of wffs only containing A, \rightarrow, ($,)$, \land, $'$ is decidable.

Thm 17C
There is an effective procedure that, given a finite set Σ of wffs and a wff α, will decide whether or not $\Sigma \models \alpha$.

Proof Use truth table.

Corollary Given finite Σ, the set $\{ \alpha \mid \alpha \text{ wff, } \Sigma \models \alpha \}$ is decidable.

Proof Use a truth table.
Remark If Σ is infinite, then the set of tautological consequences may not be decidable.

Def A set A of expressions is effectively enumerable iff there is an effective procedure that lists (in some order) the members of A.

Def A set A of expressions is semidecidable iff there exists an effective procedure that, given any expression ε, produces the answer "yes" if $\varepsilon \in A$.

Thm 17E A set A is effectively enumerable iff it is semidecidable.

Proof
\((\Rightarrow)\) Assume A is effectively enumerable. Fix ε. Wait for our effective procedure to output ε. When it does, output "yes." (If it doesn't, then never output anything.)

\((\Leftarrow)\) Assume A is semidecidable. We want to use the "semi-decision procedure" to create a list $\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots$ of the elements of A.
Do the following:

- Spend 1 minute (say 10^10 steps) checking if \(E_1 \in A \)
- Spend 2 minutes each checking if \(E_1 \in A \) and \(E_2 \in A \),
- Spend 3 minutes each checking if \(E_1 \in A, E_2 \in A, E_3 \in A \)

Whenever we find some \(E \in A \), add it to our list if we haven't already added it. If \(E \in A \) we will eventually find it since \(A \) is semidecidable.

Theorem 17.5

A set of expressions are decidable if both it and its complement are effectively enumerable (semidecidable).

Proof If \(A \) is decidable, it is semidecidable.

If \(A \) is semidecidable and its complement \(A^c \) is semidecidable, then run both "semidecision procedures" until one of them returns "yes".

If \(E \notin A \), the first will return "yes.
If \(E \in A \), then second \quad \square \quad \square
Thm 17.6
If Σ is a decidable set of wffs (or even an effectively enumerable set) then the set of tautological implications of Σ is effectively enumerable.

Proof List out all the wffs in Σ

$\sigma_1, \sigma_2, \sigma_3$

For each wff τ, test whether

$\Sigma \vdash \tau$

$\sigma_1 \vdash \tau$

$\sigma_1, \sigma_2 \vdash \tau$

If one of these holds, then we know $\Sigma \vdash \tau$ and we put τ into our list.

If none of these hold, then by the compactness theorem, $\Sigma \not\vdash \tau$.
(Recall, if $\Sigma \vdash \tau$ then there is a finite $\Sigma_0 \subseteq \Sigma$ s.t. $\Sigma_0 \vdash \tau$.)