New Directions in Randomness

Jason Rute

Pennsylvania State University

Computability, Complexity, and Randomness June 22–26

Slides available at www.personal.psu.edu/jmr71/
(Updated on June 22, 2015.)

Introduction

The goals

- To make you think about randomness in a new way.
- What is a randomness notion?
- What is a natural randomness notion?
- Can randomness be studied as a theory? Like the theory of groups?
- Can we axiomatize algorithmic randomness?

Organizing the randomness zoo

CCR 2015

The Heidelberg zoo

The randomness zoo

Antoine Taveneaux

Organizing the randomness zoo

Step 1: Organize by σ -ideals

Some randomness notions are not like the others

- Kurtz-like (green)
- Stochastic (blue)
- Partial randomness (purple/red)
- This can largely be explained via σ-ideals.

σ-ideals

- A σ-ideal is a collection of sets closed downward and under countable unions.
- **Each** σ-ideal \Im provides a notion of "small set" or "null set".
- Examples:
 - meager sets
 - null sets
 - sets of Hausdorff dimension $\leq s$ (for a fixed $0 \leq s \leq 1$).
- **E**very "randomness" notion is associated with a σ -ideal \mathfrak{I} .

Example: σ-ideals of Kurtz randomness

- $x \in 2^{\mathbb{N}}$ is **Kurtz random** (or **weak random**) if x is not in any Π_1^0 null set.
- Common complaint: "Kurtz randomness is really a genericity notion."
- Let $Kurtz^A$ be the set of A-Kurtz random sequences for the oracle A.
- Let $\mathfrak{I}_{\mathsf{Kurtz}}$ be the σ -ideal of subsets of $2^{\mathbb{N}} \setminus \mathsf{Kurtz}^A$ for some A.
- $\mathfrak{I}_{\mathsf{Kurtz}}$ is the exactly the σ -ideal of subsets of F_{σ} (i.e. Σ_2^0) null sets.
- These are the null sets associated with Riemann integrable functions, a.e. continuous functions, and Jordan-Peano measurable sets.
- J_{Kurtz} is a sub- σ -ideal of both the ideals of meager sets and the ideal of null sets.
- Kurtz randomness is both a genericity notion and a randomness notion.

σ-ideals and their "randomness notions"

σ-Ideal	Randomness (Genericity) notions
Meager	weakly 1-generic, 1-generic
Subsets of F_{σ} -null	Kurtz, finite bounded, Kurtz $^{\emptyset'}$
(Lebesgue) null	Sch, CR, ML, W2R, 2R, etc.
μ -null	μ-Sch, μ-CR, μ-ML, μ-W2R, μ-2R, etc.
Hausdorff dimension $\leq s$	Sch-dim $> s$, cdim $> s$
Null s-dim. Hausdorff measure	strong <i>s</i> -randomness: $KM(x \upharpoonright n) \geqslant^+ sn$
Null s-dim. Riesz capacity	s-energy randomness: $\sum_{n} 2^{sn-KM(x \upharpoonright n)} < \infty$

- It is not clear what the σ-ideals are for
 - the stochasticity notions
 - constructive dimension = 1
 - (weak) s-randomness
 - UD randomness
- \blacksquare However, they are clearly not the σ-ideal of Lebesgue null sets.

σ-ideal zoo

From here on, we will focus on the σ -ideal of Lebesgue (or μ -) null sets.

Organizing the randomness zoo

Step 2: Organize by computability

True randomness vs. algorithmic randomness

- \mathbf{z} is **truly random** if x avoids every null set.
- Except for a pesky problem...
- Our "solution" is to consider **algorithmic** null sets.
- However, what type of algorithmic?

Levels of computability in algorithmic randomness

Poly-time randomness notions

- Poly-time Schnorr random
- Poly-time random
- **...**
- Computable randomness notions
 - Schnorr random
 - Computably random
 - Martin-Löf random
 - Weak 2-random
 - 2-random
 - ...
 - Higher randomness notions
 - \bullet Δ_1^1 random
 - Π₁ MLR random
 - Π¹ random
 - • •

- Forcing randomness notions
 - Solovay genericity
 - ..
 - "Pointless" randomness notions
 - True randomness

From now on, we will just work at the computable level.

Organizing the randomness zoo

Step 3: Mark the minimal sufficient randomness notion in each computability level

Schnorr randomness is sufficient

- A μ -Schnorr test is a computable sequence of Σ_1^0 sets such that $\mu(U_n) \leq 2^{-n}$ and $\mu(U_n)$ is computable in n.
- x is μ -Schnorr random if $x \notin \bigcap_n U_n$ for any μ -Schnorr test.
- Schnorr randomness is closely connected to constructive mathematics.
- See the slides for my VAI 2015 talk (available on my webpage).
- Schnorr null sets where first called "null sets in the sense of Brouwer."
- Constructively provable a.e. theorems are true for Schnorr randomness.

Schnorr randomness is minimally sufficient

 Schnorr randomness is the minimal randomness notion for working with computable measurable objects.

Definition

A function $f: 2^{\mathbb{N}} \to \mathbb{R}$ is L^1 -computable if there is a computable sequence of rational step functions f_n such that

$$||f_n-f||_1 = \int |f_n-f| d\mu \leq 2^{-n}.$$

- Only on Schnorr randoms is the convergence of $f_n(x)$ guaranteed.
- Moreover, if the computable sequence g_n also converges rapidly to f in L^1 , then $\lim_n g_n(x) = \lim_n f_n(x)$ for all Schnorr randoms x.
- This is one of many such similar examples.

Other computability notions

There is no obvious reason why these ideas cannot be extended to lower and higher computability notions.

Conjectures

- **Poly-time Schnorr randomness** is the minimal sufficient randomness notion with respect to **poly-time computability**.
- **2 Higher Schnorr randomness** (i.e. Δ_1^1 **randomness**) is the minimal sufficient randomness notion with respect to **higher computability**.
 - These conjectures extend to basically every idea in this talk.

Organizing the randomness zoo

Step 4:
Separate the wheat from the chaff,
the sheep from the goats,
the good randomness notions from the bad

Work with many randomness notions at once

- Why prove a theorem for one randomness notion when you can prove it for all of them?
- For example, the theorem
 Schnorr randomness satisfies the strong law of large numbers.
 holds for all stronger randomness notions (CR, MLR, W2R, 2R, etc.).
- However, many theorems of randomness are not of this form.
- For example,

 Schnorr randomness is closed under computable permutations of bits.

is not satisfied by partial computable randomness (PCR) even though PCR is stronger than Schnorr randomness.

Developing a framework of randomness notions

- The rest of this talk is devoted to developing a system of axioms which are sufficient for working with randomness in practice.
- The randomness notions satisfying these axioms are the natural ones.
- The unnatural ones should be demoted to footnotes in our zoo.

Properties desired of an algorithmic randomness notion

A very informal guiding principle

 A natural randomness notion should be sufficient for working constructively with Brownian motion

Extendable to other spaces

■ Brownian motion is given by the Wiener measure on C[0,1] or $C[0,\infty)$.

Generalization

Randomness should generalize to all computable probability spaces (Ω, \mathbf{P}) .

Extendable to other spaces

- Schnorr randomness, Martin-Löf randomness, weak-n-randomness, n-randomness are all naturally extendable to other spaces.
- Computable randomness also has a consistent extension to other probability spaces (R.).
 - A measure bounded integral test on (X, μ) is a lowersemicomputable function $t: X \to [0, \infty]$ and a computable measure ν such that

$$\int_A t(x) d\mu(x) \leqslant \nu(A) \quad (A \subseteq X \text{ measurable}).$$

- $x \in X$ is μ -computably random if $t(x) < \infty$ for all measure bounded integral tests t.
- For some of the more combinatorial randomness notions (e.g. partial computable randomness or Kolmogorov-Loveland randomness) it is not so clear.

Invariant under isomorphisms

- Brownian motion can be transformed via a number of isomorphisms.
- For example, if B(t) is a BM, then the following are BMs:

$$-B(t)$$
 and $tB(1/t)$.

Moreover, all the standard constructions of BM are isomorphisms between other probability spaces and the Wiener measure.

Preservation under isomorphisms

If $I: (\Omega_1, \mathbf{P}_1) \simeq (\Omega_2, \mathbf{P}_2)$ is an effectively measurable isomorphism, then ω is \mathbf{P}_1 -random if and only if $I(\omega)$ is \mathbf{P}_2 -random.

Invariant under isomorphisms

- Schnorr randomness, Martin-Löf randomness, weak-n-randomness,
 n-randomness are all invariant under isomorphisms.
- Computable randomness is also invariant under isomorphisms (R.).
- Partial computable randomness is not invariant under permutations of bits.

Randomness preservation

- The probability distribution of B(1) is the Gaussian measure on \mathbb{R} .
- In other words, the Gaussian measure is the push-forward of the Wiener measure along the map $B \mapsto B(1)$.

Preservation of randomness

Assume $T: (\Omega, \mathbf{P}) \to (X, \mathbf{P}_T)$ is an effectively measurable map. If ω is **P**-random, then $T(\omega)$ is \mathbf{P}_T -random. (Here \mathbf{P}_T is the pushforward measure of **P** along T.)

Randomness preservation

- Schnorr randomness, Martin-Löf randomness, weak-n-randomness,
 n-randomness all satisfy randomness preservation.
- Computable randomness does not (Bienvenu/Porter; R.).
- Although, I will have more to say about this in a bit...

Equivalent measures share randoms

The Gaussian measure and the Lebesgue measure on R are equivalent measures, i.e. they have the same null sets.

Equivalent measures share randoms

"Effectively equivalent" measures have the same randoms.

Equivalent measures share randoms

■ This property can be stated with the following two properties.

Equivalent measures share randoms

- If *x* is μ -random and $\mu \le c\nu$ for some constant *c*, then *x* is ν -random.
- **2** Assume $\mu \ll \nu$ with an $L_1(\nu)$ -computable density $f = \frac{d\mu}{d\nu}$, that is

$$\mu(A) = \int_A f d\nu \quad (A \subseteq X).$$

Then, x is μ -random iff both x is ν -random and f(x) > 0

- The standard randomness notions satisfy both of these:
 - SR, CR, MLR, n-random, weak *n*-random

No randomness from nothing

 Again consider that a Gaussian distribution can be found from a Brownian distribution.

No randomness from nothing (a.k.a no randomness ex nihilo)

Assume $T: (\Omega, \mathbf{P}) \to (X, \mathbf{P}_T)$ is an effectively measurable map. If x is \mathbf{P}_T -random, then there is a \mathbf{P} -random ω such that $x = T(\omega)$.

No randomness from nothing

■ No-randomness-from-nothing holds for Martin-Löf randomness, *n*-randomness, weak 2-randomness, difference randomness.

Theorem (R.)

- No-randomness-from-nothing holds for computable randomness.
- However, it does not hold for Schnorr randomness:
- If x is not CR, then there is a measure-preserving almost-everywhere computable map T such that the preimage of x under T is empty.

Theorem (R.)

- Martin-Löf randomness is the smallest randomness notion satisfying both no-randomness-from-nothing and randomness preservation.
- It is interesting (but not damning!) that NRFN fails for SR.

Van Lambalgen and combining measures

- A Brownian motion on [0,1] can be **constructed** by "gluing together" two independent BM on [0,1/2].
- And vice versa, a Brownian motion on [0,1] can be **decomposed** into two independent BM on [0,1/2].

Van Lambalgen's theorem

 (ω_1, ω_2) is $P_1 \times P_2$ -random iff ω_1 is P_1 -random and ω_2 is P_2 -random independently of ω_1 .

Independence

Van Lambalgen's theorem

 (ω_1, ω_2) is $\mathbf{P}_1 \times \mathbf{P}_2$ -random iff ω_1 is \mathbf{P}_1 -random and ω_2 is \mathbf{P}_2 -random independently of ω_1 .

- "Independent" is often taken one of two ways:
 - ω is **P**-random **relative** to *A* means there is no test T^A computable from *A* that derandomizes ω .
 - ω is **P**-random **uniformly relative** to *A* means there is no computably indexed family of tests $\{T^B\}$, one test for each oracle *B*, such that T^A derandomizes ω .
- For Martin-Löf and *n*-randomness, relative and uniformly relative are the same.
- (Others have suggested that "independent" should mean whatever makes van Lambalgen's theorem holds.)

Van Lambalgen's theorem

- Martin-Löf randomness and n-randomness satisfy van Lambalgen's theorem with both uniform relativization and relativization (because they are the same!).
- The following satisfy van Lambalgen's theorem for uniform relativization:
 - Schnorr randomness (Miyabe; Miyabe and R.)
 - Demuth randomness (Diamondstone, Greenberg, Turetsky)
- For computable randomness
 - One direction is true for **uniform relativization** (Miyabe and R.).
 - The other direction fails for both types of relativization (Bauwens, last week!)
- For other types of randomness, the details are not fully worked out.

Van Lambalgen's theorem gives other results

- Notice that one can construct a Brownian motion with two steps:
 - **1** Choose a value a at t = 1 from a Gaussian distribution.
 - **2** Connect (0,0) to (1,*a*) via a **Brownian bridge ending at** *a*
- The distribution in the second step is computable uniformly from the chosen *a*.
- Using this idea we can, in many cases, recover randomness preservation for computable randomness and no-randomness-from-nothing for Schnorr randomness.

Generalized van Lambalgen's theorem

- Let (Ω_1, \mathbf{P}_1) be a computable probability measure.
- Let $\mathbf{P}(\cdot \mid \omega)$ be a **computable kernel**, that is a family of probability measures on the space Ω_2 such that the map $\omega \mapsto \mathbf{P}(\cdot \mid \omega)$ is effectively measurable.
- Combine P_1 and $P(\cdot | \omega)$ into one probability space $(\Omega_1 \times \Omega_2, P)$ via

$$\mathbf{P}(A \times B) = \int_A \mathbf{P}(B \mid \omega_1) \ d\mathbf{P}_1(\omega_1).$$

Generalized van Lambalgen's theorem

 (ω_1, ω_2) is **P**-random iff ω_1 is **P**₁-random and ω_2 is **P** $(\cdot | \omega_1)$ -random independently of ω_1 .

- Besides interpreting "independently", we also have to figure out what " $\mathbf{P}(\cdot \mid \omega_1)$ -random" means since this measure may not be computable
- It could mean using $\mathbf{P}(\cdot \mid \omega_1)$ as an oracle.
- It could mean using $P(\cdot | \omega_1)$ uniformly as an oracle.

Generalized van Lambalgen's theorem

- Generalized van Lambalgen's theorem holds for
 - Martin-Löf randomness (Takahashi)
 - Schnorr randomness (R., using uniform relativization)

Van Lambalgen's theorem for maps

- Assume $T: (\Omega, \mathbf{P}) \to (X, \mathbf{P}_T)$ is an effectively measurable map.
- Assume the conditional probability $x \mapsto \mathbf{P}(\cdot \mid T = x)$ is effectively measurable as a map from (X, \mathbf{P}_T) to measures.

van Lambalgen's theorem for maps

$$\begin{pmatrix} \omega \text{ is } \mathbf{P}\text{-random} \\ \& \quad x = T(\omega) \end{pmatrix} \Leftrightarrow \begin{pmatrix} x \text{ is } \mathbf{P}_T\text{-random } \& \\ \omega \text{ is } \mathbf{P}(\cdot \mid T = x)\text{-random independent of } x \end{pmatrix}$$

- The \Rightarrow direction is a stronger version of randomness preservation.
- The ← version is a stronger version of no-randomness-from-nothing.
- It also lets one prove that if $P \ll Q$ with an L^1 -computable density function f, then x is P-random if and only if x is Q-random and f(x) > 0.

Proposed axioms of randomness

Tentative randomness axioms

- $\langle x, \mu, a \rangle \in \mathbb{R}$ means x is μ -random independent of a.
- Axiom 1: For all μ and a, $\mu\{x : \langle x, \mu, a \rangle \in \mathcal{R}\} = 1$.
- Axiom 2: If $\langle x, \mu, a \rangle \in \mathbb{R}$, then x is μ -Schnorr random uniformly relativized to a.
- Axiom 3: If *b* is computable uniformly in (a, μ) , then $\langle x, \mu, a \rangle \in \mathbb{R}$ implies $\langle x, \mu, b \rangle \in \mathbb{R}$.
- Axiom 4: If μ is computable uniformly in a, T: $\Omega \to \Omega$ is μ -effectively measurable uniformly in a, and $y \mapsto \mu(\cdot \mid T = y)$ is μ_T -effectively measurable uniformly in a, then

$$\begin{pmatrix} \langle x, \mu, a \rangle \in \mathcal{R} \\ \text{and } y = T(x) \end{pmatrix} \Leftrightarrow \begin{pmatrix} \langle y, \mu_T, a \rangle \in \mathcal{R} \text{ and } \\ \langle x, \mu(\cdot \mid T = y), (y, a) \rangle \in \mathcal{R} \end{pmatrix}.$$

Work in progress

- These axioms are a work in progress.
- However, I can already do cool things with them.
- I have a new randomness reducibility as well.
- It treats randoms as infinitesimally small point masses and compares their relative masses.
- It says, for example, if $x \in 2^{\mathbb{N}}$ is random on the Lebesgue measure, then 0x is exactly half as random as x.
- There are now more questions than answers.

Other randomness axioms

- van Lambalgen two related axiomatizations of randomness.
- Alex Simpson is currently developing a set theoretic axiomatization of randomness based on independence.

Closing Thoughts

New directions in randomness

- I hope I made you think about algorithmic randomness in new and interesting ways.
- I hope I inspired the poly-time randomness folks and the higher randomness folks to consider how much of this applies to their world.
- I hope those interested in Schnorr and computable randomness found some interesting new theorems.

Thank You!

These slides will be available on my webpage:

http://www.personal.psu.edu/jmr71/

Or just Google™ me, "Jason Rute".

P.S. I am on the job market.