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Introduction

The goals

To make you think about randomness in a new way.
What is a randomness notion?
What is a natural randomness notion?
Can randomness be studied as a theory? Like the theory of groups?
Can we axiomatize algorithmic randomness?
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Organizing the randomness zoo

Organizing the randomness zoo
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Organizing the randomness zoo

The Heidelberg zoo
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Organizing the randomness zoo

The randomness zoo
Antoine Taveneaux
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Organizing the randomness zoo Step 1: Organize by σ-ideals

Some randomness notions are not like the others

Kurtz-like (green)
Stochastic (blue)
Partial randomness
(purple/red)

This can largely be
explained via σ-ideals.
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Organizing the randomness zoo Step 1: Organize by σ-ideals

σ-ideals

A σ-ideal is a collection of sets closed downward and under countable
unions.
Each σ-ideal I provides a notion of “small set” or “null set”.
Examples:

meager sets
null sets
sets of Hausdorff dimension 6 s (for a fixed 0 6 s 6 1).

Every “randomness” notion is associated with a σ-ideal I.

Jason Rute (Penn State) New Directions in Randomness CCR 2015 9 / 48



Organizing the randomness zoo Step 1: Organize by σ-ideals

Example: σ-ideals of Kurtz randomness

x ∈ 2N is Kurtz random (or weak random) if x is not in any Π0
1 null set.

Common complaint: “Kurtz randomness is really a genericity notion.”

Let KurtzA be the set of A-Kurtz random sequences for the oracle A.

Let IKurtz be the σ-ideal of subsets of 2NrKurtzA for some A.
IKurtz is the exactly the σ-ideal of subsets of Fσ (i.e. Σ0

2) null sets.
These are the null sets associated with Riemann integrable functions,
a.e. continuous functions, and Jordan-Peano measurable sets.
IKurtz is a sub-σ-ideal of both the ideals of meager sets and the ideal of
null sets.

Kurtz randomness is both a genericity notion and a randomness notion.
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Organizing the randomness zoo Step 1: Organize by σ-ideals

σ-ideals and their “randomness notions”

σ-Ideal Randomness (Genericity) notions

Meager weakly 1-generic, 1-generic
Subsets of Fσ-null Kurtz, finite bounded, Kurtz∅

′

(Lebesgue) null Sch, CR, ML, W2R, 2R, etc.
µ-null µ-Sch, µ-CR, µ-ML, µ-W2R, µ-2R, etc.
Hausdorff dimension 6 s Sch-dim> s, cdim> s
Null s-dim. Hausdorff measure strong s-randomness: KM(x � n)>+ sn
Null s-dim. Riesz capacity s-energy randomness:

∑
n 2sn−KM(x�n) <∞

It is not clear what the σ-ideals are for
the stochasticity notions
constructive dimension = 1
(weak) s-randomness
UD randomness

However, they are clearly not the σ-ideal of Lebesgue null sets.
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Organizing the randomness zoo Step 1: Organize by σ-ideals

σ-ideal zoo

meager
(W1G, 1G)

NULL
(SR, MLR)

⊆ null Fσ

(Kurtz)
s-Riesz null

(s-energy rand)

s-Hausdorff null
(strong s-rand)

Hdim 6 s
(cdim > s)

From here on, we will focus on the σ-ideal of Lebesgue (or µ-) null sets.
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Organizing the randomness zoo Step 2: Organize by computability
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Organizing the randomness zoo Step 2: Organize by computability

True randomness vs. algorithmic randomness

x is truly random if x avoids every null set.
Except for a pesky problem...

Our “solution” is to consider algorithmic null sets.
However, what type of algorithmic?
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Organizing the randomness zoo Step 2: Organize by computability

Levels of computability in algorithmic randomness

Poly-time randomness notions
Poly-time Schnorr random
Poly-time random
...
Computable randomness notions

Schnorr random
Computably random
Martin-Löf random
Weak 2-random
2-random
...
Higher randomness notions

∆1
1 random
Π1

1 MLR random
Π1

1 random
...

Forcing randomness notions

Solovay genericity
...
“Pointless” randomness
notions

True randomness

From now on, we will just work
at the computable level.
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Organizing the randomness zoo Step 3: Mark minimal sufficient randomness notion

Organizing the randomness zoo

Step 3: Mark the minimal sufficient randomness notion in
each computability level
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Organizing the randomness zoo Step 3: Mark minimal sufficient randomness notion

Schnorr randomness is sufficient

A µ-Schnorr test is a computable sequence of Σ0
1 sets such that

µ(Un)6 2−n and µ(Un) is computable in n.
x is µ-Schnorr random if x <

⋂
n Un for any µ-Schnorr test.

Schnorr randomness is closely connected to constructive mathematics.
See the slides for my VAI 2015 talk (available on my webpage).
Schnorr null sets where first called “null sets in the sense of Brouwer.”
Constructively provable a.e. theorems are true for Schnorr randomness.
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Organizing the randomness zoo Step 3: Mark minimal sufficient randomness notion

Schnorr randomness is minimally sufficient

Schnorr randomness is the minimal randomness notion for working with
computable measurable objects.

Definition
A function f : 2N→R is L1-computable if there is a computable sequence of
rational step functions fn such that

‖fn − f‖1 =

∫
|fn − f |dµ6 2−n.

Only on Schnorr randoms is the convergence of fn(x) guaranteed.
Moreover, if the computable sequence gn also converges rapidly to f in L1,
then limn gn(x) = limn fn(x) for all Schnorr randoms x.

This is one of many such similar examples.
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Organizing the randomness zoo Step 3: Mark minimal sufficient randomness notion

Other computability notions

There is no obvious reason why these ideas cannot be extended to lower
and higher computability notions.

Conjectures

1 Poly-time Schnorr randomness is the minimal sufficient randomness
notion with respect to poly-time computability.

2 Higher Schnorr randomness (i.e. ∆1
1 randomness) is the minimal

sufficient randomness notion with respect to higher computability.

These conjectures extend to basically every idea in this talk.
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Organizing the randomness zoo Step 4: Separate the good from the bad

Organizing the randomness zoo

Step 4:
Separate the wheat from the chaff,

the sheep from the goats,
the good randomness notions from the bad
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Organizing the randomness zoo Step 4: Separate the good from the bad

Work with many randomness notions at once

Why prove a theorem for one randomness notion when you can prove it
for all of them?

For example, the theorem
Schnorr randomness satisfies the strong law of large numbers.

holds for all stronger randomness notions (CR, MLR, W2R, 2R, etc.).

However, many theorems of randomness are not of this form.
For example,

Schnorr randomness is closed under computable permutations of bits.

is not satisfied by partial computable randomness (PCR) even though
PCR is stronger than Schnorr randomness.
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Organizing the randomness zoo Step 4: Separate the good from the bad

Developing a framework of randomness notions

The rest of this talk is devoted to developing a system of axioms which
are sufficient for working with randomness in practice.
The randomness notions satisfying these axioms are the natural ones.
The unnatural ones should be demoted to footnotes in our zoo.
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Properties desired of an algorithmic randomness notion

Properties desired of an algorithmic randomness
notion
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Properties desired of an algorithmic randomness notion

A very informal guiding principle

A natural randomness notion should be sufficient for working
constructively with Brownian motion
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Properties desired of an algorithmic randomness notion

Extendable to other spaces

Brownian motion is given by the Wiener measure on C[0,1] or C[0,∞).

Generalization
Randomness should generalize to all computable probability spaces (Ω,P).
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Properties desired of an algorithmic randomness notion

Extendable to other spaces

Schnorr randomness, Martin-Löf randomness, weak-n-randomness,
n-randomness are all naturally extendable to other spaces.
Computable randomness also has a consistent extension to other
probability spaces (R.).

A measure bounded integral test on (X,µ) is a
lowersemicomputable function t : X→ [0,∞] and a computable
measure ν such that∫

A
t(x)dµ(x)6 ν(A) (A⊆ X measurable).

x ∈ X is µ-computably random if t(x)<∞ for all measure bounded
integral tests t.

For some of the more combinatorial randomness notions (e.g. partial
computable randomness or Kolmogorov-Loveland randomness) it is not
so clear.

Jason Rute (Penn State) New Directions in Randomness CCR 2015 26 / 48



Properties desired of an algorithmic randomness notion

Invariant under isomorphisms

Brownian motion can be transformed via a number of isomorphisms.
For example, if B(t) is a BM, then the following are BMs:

−B(t) and tB(1/t).

Moreover, all the standard constructions of BM are isomorphisms
between other probability spaces and the Wiener measure.

Preservation under isomorphisms

If I : (Ω1,P1)' (Ω2,P2) is an effectively measurable isomorphism, thenω is
P1-random if and only if I(ω) is P2-random.
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Properties desired of an algorithmic randomness notion

Invariant under isomorphisms

Schnorr randomness, Martin-Löf randomness, weak-n-randomness,
n-randomness are all invariant under isomorphisms.
Computable randomness is also invariant under isomorphisms (R.).
Partial computable randomness is not invariant under permutations of
bits.
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Properties desired of an algorithmic randomness notion

Randomness preservation

The probability distribution of B(1) is the Gaussian measure on R.
In other words, the Gaussian measure is the push-forward of the Wiener
measure along the map B 7→ B(1).

Preservation of randomness
Assume T : (Ω,P)→ (X,PT) is an effectively measurable map. Ifω is
P-random, then T(ω) is PT-random. (Here PT is the pushforward measure of
P along T.)
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Properties desired of an algorithmic randomness notion

Randomness preservation

Schnorr randomness, Martin-Löf randomness, weak-n-randomness,
n-randomness all satisfy randomness preservation.
Computable randomness does not (Bienvenu/Porter; R.).

Although, I will have more to say about this in a bit...
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Properties desired of an algorithmic randomness notion

Equivalent measures share randoms

The Gaussian measure and the Lebesgue measure on R are equivalent
measures, i.e. they have the same null sets.

Equivalent measures share randoms

”Effectively equivalent” measures have the same randoms.
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Properties desired of an algorithmic randomness notion

Equivalent measures share randoms

This property can be stated with the following two properties.

Equivalent measures share randoms

1 If x is µ-random and µ6 cν for some constant c, then x is ν-random.
2 Assume µ� νwith an L1(ν)-computable density f = dµ

dν , that is

µ(A) =

∫
A

f dν (A⊆ X).

Then, x is µ-random iff both x is ν-random and f (x)> 0

The standard randomness notions satisfy both of these:

SR, CR, MLR, n-random, weak n-random
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Properties desired of an algorithmic randomness notion

No randomness from nothing

Again consider that a Gaussian distribution can be found from a
Brownian distribution.

No randomness from nothing (a.k.a no randomness ex nihilo)

Assume T : (Ω,P)→ (X,PT) is an effectively measurable map. If x is
PT-random, then there is a P-randomω such that x = T(ω).
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Properties desired of an algorithmic randomness notion

No randomness from nothing

No-randomness-from-nothing holds for Martin-Löf randomness,
n-randomness, weak 2-randomness, difference randomness.

Theorem (R.)

No-randomness-from-nothing holds for computable randomness.
However, it does not hold for Schnorr randomness:
If x is not CR, then there is a measure-preserving almost-everywhere
computable map T such that the preimage of x under T is empty.

Theorem (R.)

Martin-Löf randomness is the smallest randomness notion satisfying
both no-randomness-from-nothing and randomness preservation.

It is interesting (but not damning!) that NRFN fails for SR.
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Properties desired of an algorithmic randomness notion

Van Lambalgen and combining measures

A Brownian motion on [0,1] can be constructed by “gluing together” two
independent BM on [0,1/2].
And vice versa, a Brownian motion on [0,1] can be decomposed into two
independent BM on [0,1/2].

Van Lambalgen’s theorem

(ω1,ω2) is P1×P2-random iffω1 is P1-random andω2 is P2-random
independently ofω1.
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Properties desired of an algorithmic randomness notion

Independence

Van Lambalgen’s theorem

(ω1,ω2) is P1×P2-random iffω1 is P1-random andω2 is P2-random
independently ofω1.

“Independent” is often taken one of two ways:

ω is P-random relative to A means there is no test TA computable
from A that derandomizesω.
ω is P-random uniformly relative to A means there is no
computably indexed family of tests {TB}, one test for each oracle B,
such that TA derandomizesω.

For Martin-Löf and n-randomness, relative and uniformly relative are the
same.
(Others have suggested that “independent” should mean whatever
makes van Lambalgen’s theorem holds.)
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Properties desired of an algorithmic randomness notion

Van Lambalgen’s theorem

Martin-Löf randomness and n-randomness satisfy van Lambalgen’s
theorem with both uniform relativization and relativization (because
they are the same!).
The following satisfy van Lambalgen’s theorem for uniform
relativization:

Schnorr randomness (Miyabe; Miyabe and R.)
Demuth randomness (Diamondstone, Greenberg, Turetsky)

For computable randomness

One direction is true for uniform relativization (Miyabe and R.).
The other direction fails for both types of relativization (Bauwens,
last week!)

For other types of randomness, the details are not fully worked out.
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Properties desired of an algorithmic randomness notion

Van Lambalgen’s theorem gives other results

Notice that one can construct a Brownian motion with two steps:

1 Choose a value a at t = 1 from a Gaussian distribution.
2 Connect (0,0) to (1,a) via a Brownian bridge ending at a

The distribution in the second step is computable uniformly from the
chosen a.
Using this idea we can, in many cases, recover randomness preservation
for computable randomness and no-randomness-from-nothing for
Schnorr randomness.
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Properties desired of an algorithmic randomness notion

Generalized van Lambalgen’s theorem

Let (Ω1,P1) be a computable probability measure.
Let P(· |ω) be a computable kernel, that is a family of probability
measures on the spaceΩ2 such that the mapω 7→ P(·|ω) is effectively
measurable.
Combine P1 and P(· |ω) into one probability space (Ω1×Ω2,P) via

P(A×B) =
∫

A
P(B |ω1) dP1(ω1).

Generalized van Lambalgen’s theorem

(ω1,ω2) is P-random iffω1 is P1-random andω2 is P(· |ω1)-random
independently ofω1.

Besides interpreting “independently”, we also have to figure out what
“P(· |ω1)-random” means since this measure may not be computable
It could mean using P(· |ω1) as an oracle.
It could mean using P(· |ω1) uniformly as an oracle.
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Properties desired of an algorithmic randomness notion

Generalized van Lambalgen’s theorem

Generalized van Lambalgen’s theorem holds for

Martin-Löf randomness (Takahashi)
Schnorr randomness (R., using uniform relativization)
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Properties desired of an algorithmic randomness notion

Van Lambalgen’s theorem for maps

Assume T : (Ω,P)→ (X,PT) is an effectively measurable map.
Assume the conditional probability x 7→ P(· | T = x) is effectively
measurable as a map from (X,PT) to measures.

van Lambalgen’s theorem for maps(
ω is P-random
& x = T(ω)

)
⇔

(
x is PT-random &

ω is P( · | T = x)-random independent of x

)

The⇒ direction is a stronger version of randomness preservation.
The⇐ version is a stronger version of no-randomness-from-nothing.
It also lets one prove that if P�Q with an L1-computable density
function f , then x is P-random if and only if x is Q-random and f (x)> 0.
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Proposed axioms of randomness

Proposed axioms of randomness
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Proposed axioms of randomness

Tentative randomness axioms

〈x,µ,a〉 ∈ R means x is µ-random independent of a.

Axiom 1: For all µ and a, µ{x : 〈x,µ,a〉 ∈ R}= 1.
Axiom 2: If 〈x,µ,a〉 ∈ R, then x is µ-Schnorr random uniformly relativized
to a.
Axiom 3: If b is computable uniformly in (a,µ), then 〈x,µ,a〉 ∈ R implies
〈x,µ,b〉 ∈ R.
Axiom 4: If µ is computable uniformly in a, T : Ω→Ω is µ-effectively
measurable uniformly in a, and y 7→ µ(· | T = y) is µT-effectively
measurable uniformly in a, then(

〈x,µ,a〉 ∈ R

and y = T(x)

)
⇔

(
〈y,µT,a〉 ∈ R and

〈x,µ(· | T = y),(y,a)〉 ∈ R

)
.
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Proposed axioms of randomness

Work in progress

These axioms are a work in progress.
However, I can already do cool things with them.
I have a new randomness reducibility as well.
It treats randoms as infinitesimally small point masses and compares
their relative masses.
It says, for example, if x ∈ 2N is random on the Lebesgue measure, then
0x is exactly half as random as x.
There are now more questions than answers.
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Proposed axioms of randomness

Other randomness axioms

van Lambalgen two related axiomatizations of randomness.
Alex Simpson is currently developing a set theoretic axiomatization of
randomness based on independence.
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Closing Thoughts

Closing Thoughts
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Closing Thoughts

New directions in randomness

I hope I made you think about algorithmic randomness in new and
interesting ways.
I hope I inspired the poly-time randomness folks and the higher
randomness folks to consider how much of this applies to their world.
I hope those interested in Schnorr and computable randomness found
some interesting new theorems.
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Closing Thoughts

Thank You!

These slides will be available on my webpage:

http://www.personal.psu.edu/jmr71/

Or just Google™me, “Jason Rute”.

P.S. I am on the job market.

Jason Rute (Penn State) New Directions in Randomness CCR 2015 48 / 48

http://www.personal.psu.edu/jmr71/

	Introduction
	Organizing the randomness zoo
	Step 1: Organize by -ideals
	Step 2: Organize by computability
	Step 3: Mark the minimal sufficient randomness notion in each computability level
	Step 4: Separate the wheat from the chaff, the sheep from the goats, the good randomness notions from the bad

	Properties desired of an algorithmic randomness notion
	Proposed axioms of randomness
	Closing Thoughts

