Asset Prices

Econ 497F Lecture

Barry W. Ickes

The Pennsylvania State University

Spring 2007
Basic Framework

- We consider a simple case that turns out to be powerful.
Basic Framework

- We consider a simple case that turns out to be powerful.
- Why do people hold assets? To smooth consumption in order to maximize utility. We have a basic choice problem.
Basic Framework

- We consider a simple case that turns out to be powerful.
 - Why do people hold assets? To smooth consumption in order to maximize utility. We have a basic choice problem.
- Start by asking how an individual values a stream of uncertain cash flows. Let

\[U(c_t, c_{t+1}) = u(c_t) + \beta E_t[u(c_{t+1})] \]

(11)

be the utility function defined over present and future consumption.
We consider a simple case that turns out to be powerful.

Why do people hold assets? To smooth consumption in order to maximize utility. We have a basic choice problem.

Start by asking how an individual values a stream of uncertain cash flows. Let

$$U(c_t, c_{t+1}) = u(c_t) + \beta E_t[u(c_{t+1})]$$

be the utility function defined over present and future consumption.

E is expectations operator – uncertainty.
Basic Framework

- We consider a simple case that turns out to be powerful.
 - Why do people hold assets? To smooth consumption in order to maximize utility. We have a basic choice problem.

- Start by asking how an individual values a stream of uncertain cash flows. Let
 \[U(c_t, c_{t+1}) = u(c_t) + \beta E_t[u(c_{t+1})] \]
 (11)

 be the utility function defined over present and future consumption.
 - \(E \) is expectations operator – uncertainty.
 - future is not the present, we discount it by \(\beta \leq 1 \).
Basic Framework

- We consider a simple case that turns out to be powerful.
 - Why do people hold assets? To smooth consumption in order to maximize utility. We have a basic choice problem.

- Start by asking how an individual values a stream of uncertain cash flows. Let
 \[U(c_t, c_{t+1}) = u(c_t) + \beta E_t[u(c_{t+1})] \] (11)
 be the utility function defined over present and future consumption.
 - \(E \) is expectations operator – uncertainty.
 - future is not the present, we discount it by \(\beta \leq 1 \).

- With concave utility we have diminishing marginal utility which gives the desire to smooth consumption.
Basic Framework

- We consider a simple case that turns out to be powerful.
 - Why do people hold assets? To smooth consumption in order to maximize utility. We have a basic choice problem.
- Start by asking how an individual values a stream of uncertain cash flows. Let
 \[U(c_t, c_{t+1}) = u(c_t) + \beta E_t[u(c_{t+1})] \tag{11} \]
 be the utility function defined over present and future consumption.
 - \(E \) is expectations operator – uncertainty.
 - future is not the present, we discount it by \(\beta \leq 1 \).
- With concave utility we have diminishing marginal utility which gives the desire to smooth consumption.
 - We have not just impatience (\(\beta \)), but risk aversion...
We consider a simple case that turns out to be powerful. Why do people hold assets? To smooth consumption in order to maximize utility. We have a basic choice problem.

Start by asking how an individual values a stream of uncertain cash flows. Let

$$U(c_t, c_{t+1}) = u(c_t) + \beta E_t[u(c_{t+1})]$$ \hspace{2cm} (11)

be the utility function defined over present and future consumption.

- E is expectations operator – uncertainty.
- future is not the present, we discount it by $\beta \leq 1$.

With concave utility we have diminishing marginal utility which gives the desire to smooth consumption.

- We have not just impatience (β), but risk aversion
- Investors prefer a consumption stream that is steady over time and across states of nature.
Basic Framework

Definition

Define x_{t+1} as the payoff of an investment.

- E.G., equity, the payoff tomorrow: $x_{t+1} = p_{t+1} + d_{t+1}$; (not rate of return; but value of investment in $t+1$)
Basic Framework

Definition

Define x_{t+1} as the payoff of an investment.

- E.G., equity, the payoff tomorrow: $x_{t+1} = p_{t+1} + d_{t+1}$; (not rate of return; but value of investment in $t + 1$)
- Agent is a price taker in the asset. Let e_t, e_{t+1} be the current and future endowments, and ϕ be the amount of the asset he chooses to buy.
Basic Framework

Definition

Define x_{t+1} as the payoff of an investment.

- E.G., equity, the payoff tomorrow: $x_{t+1} = p_{t+1} + d_{t+1}$; (not rate of return; but value of investment in $t + 1$)
- Agent is a price taker in the asset. Let e_t, e_{t+1} be the current and future endowments, and ϕ be the amount of the asset he chooses to buy
- Then the consumer’s problem is to

$$\max_{\phi} u(c_t) + E_t[\beta u(c_{t+1})] \quad s.t.$$

$$c_t = e_t - p_t \phi,$$

$$c_{t+1} = e_{t+1} + x_{t+1} \phi$$
Definition

Define x_{t+1} as the payoff of an investment.

- E.G., equity, the payoff tomorrow: $x_{t+1} = p_{t+1} + d_{t+1}$; (not rate of return; but value of investment in $t+1$)
- Agent is a price taker in the asset. Let e_t, e_{t+1} be the current and future endowments, and ϕ be the amount of the asset he chooses to buy
- Then the consumer’s problem is to

$$\max_{\phi} u(c_t) + E_t[\beta u(c_{t+1})] \quad s.t.$$

$$c_t = e_t - p_t \phi,$$
$$c_{t+1} = e_{t+1} + x_{t+1} \phi$$

- Future consumption depends on the payoff in $t+1$, which you do not know today.
The solution to this problem yields the familiar first-order condition:

\[p_t u'(c_t) = E_t[\beta u'(c_{t+1})x_{t+1}] \] \hspace{1cm} (12)
The solution to this problem yields the familiar first-order condition:

\[p_t u'(c_t) = E_t[\beta u'(c_{t+1})x_{t+1}] \quad (12) \]

or

\[p_t = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)}x_{t+1} \right]. \quad (13) \]

Expression (12) is the standard first-order condition.
Basic Framework

- The solution to this problem yields the familiar first-order condition:

\[p_t u'(c_t) = E_t [\beta u'(c_{t+1}) x_{t+1}] \] \hspace{1cm} (12)

- or

\[p_t = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} x_{t+1} \right]. \] \hspace{1cm} (13)

Expression (12) is the standard first-order condition.

- LHS is the utility loss to the consumer of purchasing one more unit of the asset this period.
Basic Framework

- The solution to this problem yields the familiar first-order condition:

\[p_t u'(c_t) = E_t[\beta u'(c_{t+1})x_{t+1}] \] \hspace{1cm} (12)

- or

\[p_t = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)}x_{t+1} \right]. \] \hspace{1cm} (13)

Expression (12) is the standard first-order condition.

- LHS is the utility loss to the consumer of purchasing one more unit of the asset this period.
- What do you gain? \(u'(c_{t+1})x_{t+1} \), but we must discount this future utility to equate it with the present.
Basic Framework

- The solution to this problem yields the familiar first-order condition:

\[p_t u'(c_t) = E_t[\beta u'(c_{t+1}) x_{t+1}] \] \hspace{1cm} (12)

- or

\[p_t = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} x_{t+1} \right]. \] \hspace{1cm} (13)

Expression (12) is the standard first-order condition.

- LHS is the utility loss to the consumer of purchasing one more unit of the asset this period.
- What do you gain? \(u'(c_{t+1}) x_{t+1} \), but we must discount this future utility to equate it with the present.
- If the LHS was less than the RHS the consumer would purchase more of the asset until the condition is satisfied.
The solution to this problem yields the familiar first-order condition:

\[p_t u'(c_t) = E_t [\beta u'(c_{t+1}) x_{t+1}] \]

or

\[p_t = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} x_{t+1} \right]. \]

Expression (12) is the standard first-order condition.

- LHS is the utility loss to the consumer of purchasing one more unit of the asset this period.
- What do you gain? \(u'(c_{t+1}) x_{t+1} \), but we must discount this future utility to equate it with the present.
- If the LHS was less than the RHS the consumer would purchase more of the asset until the condition is satisfied.

Expression (13) is the central asset pricing formula.
The solution to this problem yields the familiar first-order condition:

\[p_t u'(c_t) = E_t[\beta u'(c_{t+1})x_{t+1}] \] \hspace{1cm} (12)

or

\[p_t = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} x_{t+1} \right] . \] \hspace{1cm} (13)

Expression (12) is the standard first-order condition.

- LHS is the utility loss to the consumer of purchasing one more unit of the asset this period.
- What do you gain? \(u'(c_{t+1})x_{t+1} \), but we must discount this future utility to equate it with the present.
- If the LHS was less than the RHS the consumer would purchase more of the asset until the condition is satisfied.

Expression (13) is *the* central asset pricing formula.

- Notice that consumption is on the RHS and that is endogenous.
We can see the problem graphically in figure 3.
Basic Framework

- We can see the problem graphically in figure 3
 - the endowments \((e_t, e_{t+1})\) at \(E\): note that this cannot be an optimum
We can see the problem graphically in figure 3

- the endowments \((e_t, e_{t+1})\) at \(E\): note that this cannot be an optimum
- if we move on the budget line to the northwest we move on a higher indifference curve
We can see the problem graphically in figure 3

- the endowments \((e_t, e_{t+1})\) at \(E\): note that this cannot be an optimum.
- if we move on the budget line to the northwest we move on a higher indifference curve.
- optimum is at \(C^*\); if we move from there utility must fall.
Basic Framework

- We can see the problem graphically in figure 3
 - the endowments \((e_t, e_{t+1})\) at \(E\): note that this cannot be an optimum
 - if we move on the budget line to the northwest we move on a higher indifference curve
 - optimum is at \(C^*\); if we move from there utility must fall

- Key difference, we don’t know \(c_{t+1}\) or \(x_{t+1}\), just have expectations
Consumer’s Problem

Figure: Consumer’s problem
Stochastic Discount Factor

Definition

We can define the stochastic discount factor, \(m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)} \).

- Clearly \(m \) is the marginal rate of substitution.
We can define the stochastic discount factor, $m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}$.

- Clearly m is the marginal rate of substitution.
- Why it is also called the sdf? Re-write (13) as:

$$p_t = E_t [m_{t+1} x_{t+1}] .$$ (14)
Stochastic Discount Factor

Definition

We can define the stochastic discount factor, $m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}$.

- Clearly m is the marginal rate of substitution.
- Why it is also called the sdf? Re-write (13) as:

$$p_t = E_t [m_{t+1} x_{t+1}]$$

(14)

- With no uncertainty, $p_t = \frac{1}{R^f} x_{t+1}$, where $R^f = 1 + r^f$ is the gross risk-free rate of return: R^f "discounts" x.

Stochastic Discount Factor

Definition

We can define the stochastic discount factor, \(m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)} \).

- Clearly \(m \) is the marginal rate of substitution.
- Why it is also called the sdf? Re-write (13) as:
 \[
p_t = E_t [m_{t+1} x_{t+1}].
 \]
- With no uncertainty, \(p_t = \frac{1}{R^f} x_{t+1} \), where \(R^f = 1 + r^f \) is the gross risk-free rate of return: \(R^f \) "discounts" \(x \).
- With uncertainty for each asset \(i \)
 \[
p_t^i = \frac{1}{R^i} E_t(x^i_{t+1}).
 \]
Definition

We can define the stochastic discount factor, \(m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)} \).

- Clearly \(m \) is the marginal rate of substitution.
- Why it is also called the sdf? Re-write (13) as:

\[
p_t = E_t \left[m_{t+1} x_{t+1}\right].
\]

(14)

- With no uncertainty, \(p_t = \frac{1}{R^f} x_{t+1} \), where \(R^f = 1 + r^f \) is the gross risk-free rate of return: \(R^f \) "discounts" \(x \).
- With uncertainty for each asset \(i \)

\[
p^i_t = \frac{1}{R^i} E_t(x^i_{t+1}).
\]

- \(R^i \), is used to discount the uncertain payoff, \(x^i_{t+1} \).
The sdf thus generalizes the normal approach.
Stochastic Discount Factor

- The sdf thus generalizes the normal approach.
- One factor, m_{t+1}, the same one for each asset, can be used to discount any asset.

What does $p_t = E_t [m_t + 1 x_t + 1]$ imply?

What matters for asset prices is how payoffs are correlated with the value of a dollar in a given state. An asset that pays off when a dollar is valuable is worth more.

When is a dollar more valuable?

m is high when when consumption is expected to be low (so the marginal utility of consumption is high).
Stochastic Discount Factor

- The sdf thus generalizes the normal approach.
 - One factor, m_{t+1}, the same one for each asset, can be used to discount any asset.
- What does $p_t = E_t [m_{t+1} x_{t+1}]$ imply?

What matters for asset prices is how payoffs are correlated with the value of a dollar in a given state. An asset that pays off when a dollar is valuable is worth more when m is high when consumption is expected to be low (so the marginal utility of consumption is high).
The sdf thus generalizes the normal approach.
- One factor, m_{t+1}, the same one for each asset, can be used to discount any asset.

What does $p_t = E_t [m_{t+1}x_{t+1}]$ imply?
- what matters for asset prices is how payoffs are correlated with the value of a dollar in a given state
The sdf thus generalizes the normal approach.

One factor, m_{t+1}, the same one for each asset, can be used to discount any asset.

What does $p_t = E_t [m_{t+1}x_{t+1}]$ imply?

- what matters for asset prices is how payoffs are correlated with the value of a dollar in a given state
- an asset that pays off when a dollar is valuable is worth more
The sdf thus generalizes the normal approach.

- One factor, m_{t+1}, the same one for each asset, can be used to discount any asset.

What does $p_t = E_t [m_{t+1}x_{t+1}]$ imply?

- What matters for asset prices is how payoffs are correlated with the value of a dollar in a given state
- An asset that pays off when a dollar is valuable is worth more

When is a dollar more valuable?
Stochastic Discount Factor

- The sdf thus generalizes the normal approach.
 - One factor, m_{t+1}, the same one for each asset, can be used to discount any asset.

- What does $p_t = E_t [m_{t+1}x_{t+1}]$ imply?
 - what matters for asset prices is how payoffs are correlated with the value of a dollar in a given state
 - an asset that pays off when a dollar is valuable is worth more

- When is a dollar more valuable?
 - m is high when when consumption is expected to be low (so the marginal utility of consumption is high)
Stochastic Discount Factor

Example

Two-State derivation of SDF.

- Recall relation between p_i and A-D state price:

$$p_i = q_1 x_{1i} + q_2 x_{2i}$$

where the q's are the A-D state prices.
Example

Two-State derivation of SDF.

- Recall relation between p_i and A-D state price:
 \[p_i = q_1 x_{1i} + q_2 x_{2i} \]
 where the q's are the A-D state prices.
- Clearly we can write
 \[p_i = \pi_1 \left(\frac{q_1}{\pi_1} \right) x_{1i} + \pi_2 \left(\frac{q_2}{\pi_2} \right) x_{2i} \]
 \[\equiv \pi_1 m_1 x_{1i} + \pi_2 m_2 x_{2i} \]
Stochastic Discount Factor

Example

Two-State derivation of SDF.

- Recall relation between p_i and A-D state price:

$$p_i = q_1 x_{1i} + q_2 x_{2i}$$

where the $q's$ are the A-D state prices.

- Clearly we can write

$$p_i = \pi_1 \left(\frac{q_1}{\pi_1} \right) x_{1i} + \pi_2 \left(\frac{q_2}{\pi_2} \right) x_{2i}$$

$$\equiv \pi_1 m_1 x_{1i} + \pi_2 m_2 x_{2i}$$

- where the $m's$ are the ratio of state prices to the probability of the state, and are thus sdf’s.
Stochastic Discount Factor

Example

Two-State derivation of SDF.

- Recall relation between p_i and A-D state price:
 \[p_i = q_1 x_{1i} + q_2 x_{2i} \]
 where the q's are the A-D state prices.

- Clearly we can write
 \[p_i = \pi_1 \left(\frac{q_1}{\pi_1} \right) x_{1i} + \pi_2 \left(\frac{q_2}{\pi_2} \right) x_{2i} \]
 \[\equiv \pi_1 m_1 x_{1i} + \pi_2 m_2 x_{2i} \]
 where the m's are the ratio of state prices to the probability of the state, and are thus sdf’s.

- Then, clearly,
 \[p_i = E_j[m_j x_{ji}] \]
The stochastic discount factor is thus a random variable that differs across states, but is the same for all assets.
Stochastic Discount Factor

- The stochastic discount factor is thus a random variable that differs across states, but is the same for all assets.

- It is the ratio of state price to probability; thus, it is proportional to marginal utility of wealth in each state.
Stochastic Discount Factor

- The stochastic discount factor is thus a random variable that differs across states, but is the same for all assets.
- It is the ratio of state price to probability; thus, it is proportional to marginal utility of wealth in each state.
- The price of any asset is the average of its payoffs, weighted by state probabilities and marginal utilities.
The stochastic discount factor is thus a random variable that differs across states, but is the same for all assets.

- It is the ratio of state price to probability; thus, it is proportional to marginal utility of wealth in each state.
- The price of any asset is the average of its payoffs, weighted by state probabilities and marginal utilities.
- If an asset pays off in states that occur with high probability it will be more valuable, other things equal. If an asset pays off in states where marginal utility is high it will be more valuable, other things equal.
The stochastic discount factor is thus a random variable that differs across states, but is the same for all assets.

- It is the ratio of state price to probability; thus, it is proportional to marginal utility of wealth in each state.
- The price of any asset is the average of its payoffs, weighted by state probabilities and marginal utilities.
- If an asset pays off in states that occur with high probability it will be more valuable, other things equal. If an asset pays off in states where marginal utility is high it will be more valuable, other things equal.
- Equivalently, the price of any asset is the expected product of the SDF and the payoff.
Stochastic Discount Factor

- The stochastic discount factor is thus a random variable that differs across states, but is the same for all assets.
 - It is the ratio of state price to probability; thus, it is proportional to marginal utility of wealth in each state.
 - The price of any asset is the average of its payoffs, weighted by state probabilities and marginal utilities.
 - If an asset pays off in states that occur with high probability it will be more valuable, other things equal. If an asset pays off in states where marginal utility is high it will be more valuable, other things equal.
 - Equivalently, the price of any asset is the expected product of the SDF and the payoff.
 - This seems only notational. But involved here is a deep and useful separation. All asset pricing models amount to alternative ways of connecting the stochastic discount factor to the data.
Define the gross return as $R_{t+1} \equiv \frac{x_{t+1}}{p_t}$.
Payoffs

- Define the gross return as \(R_{t+1} \equiv \frac{x_{t+1}}{p_t} \).
- Then

\[
1 = E_t [m_{t+1} R_{t+1}]
\]
Payoffs

- Define the gross return as $R_{t+1} \equiv \frac{x_{t+1}}{p_t}$.
- Then
 \[1 = E_t[m_{t+1} R_{t+1}] \]
- The gross risk free rate is $R_f \equiv 1 + r_f$.
Define the gross return as \(R_{t+1} \equiv \frac{x_{t+1}}{p_t} \).

Then

\[
1 = E_t[m_{t+1} R_{t+1}]
\]

The gross risk free rate is \(R_f \equiv 1 + r_f \).

Thus, \(1 = E_t[m_{t+1} R_f] = E(m) R_f \),
Payoffs

- Define the gross return as \(R_{t+1} \equiv \frac{x_{t+1}}{p_t} \).
 - Then
 \[
 1 = E_t[m_{t+1} R_{t+1}]
 \]
- The gross risk free rate is \(R_f \equiv 1 + r_f \).
- Thus, \(1 = E_t[m_{t+1} R_f] = E(m) R_f \),
 - as the payoff on a risk-free asset is known with certainty.
Payoffs

- Define the gross return as \(R_{t+1} \equiv \frac{x_{t+1}}{p_t} \).

- Then
 \[
 1 = E_t[m_{t+1} R_{t+1}]
 \]

- The gross risk free rate is \(R_f \equiv 1 + r_f \).

- Thus, \(1 = E_t[m_{t+1} R_f] = E(m) R_f \),

 as the payoff on a risk-free asset is know with certainty.

- Thus,
 \[
 R_f = \frac{1}{E(m)} \quad \text{(15)}
 \]
Payoffs

- Define the gross return as $R_{t+1} \equiv \frac{x_{t+1}}{p_t}$.
 - Then
 \[1 = E_t[m_{t+1}R_{t+1}] \]

- The gross risk free rate is $R_f \equiv 1 + r_f$.
- Thus, $1 = E_t[m_{t+1}R_f] = E(m)R_f$,
 - as the payoff on a risk-free asset is known with certainty.
 - Thus,
 \[R_f = \frac{1}{E(m)} \] (15)
 - notice that we can use (15) to define a shadow risk-free rate even if such a security did not actually exist
Real interest rates

- We can use (15) to think about the economics of real interest rates
Real interest rates

- We can use (15) to think about the economics of real interest rates
- Suppose that $u'(c) = c^{-\gamma}$, power utility
Real interest rates

- We can use (15) to think about the economics of real interest rates
- Suppose that $u'(c) = c^{-\gamma}$, power utility
 - marginal utility declines with consumption (see figure)
Real interest rates

- We can use (15) to think about the economics of real interest rates
- Suppose that $u'(c) = c^{-\gamma}$, power utility
 - marginal utility declines with consumption (see figure)
- Suppose no uncertainty. Then,

$$R_f = \frac{1}{\beta} \left(\frac{c_{t+1}}{c_t} \right)^\gamma$$

(16)
Real interest rates

- We can use (15) to think about the economics of real interest rates.
- Suppose that \(u'(c) = c^{-\gamma} \), power utility:
 - marginal utility declines with consumption (see figure).
- Suppose no uncertainty. Then,
 \[
 R_f = \frac{1}{\beta} \left(\frac{c_{t+1}}{c_t} \right)^\gamma
 \]
 (16)
- Three effects follow:
Real interest rates

- We can use (15) to think about the economics of real interest rates
- Suppose that $u'(c) = c^{-\gamma}$, power utility
 - marginal utility declines with consumption (see figure)
- Suppose no uncertainty. Then,
 \[R_f = \frac{1}{\beta} \left(\frac{c_{t+1}}{c_t} \right)^\gamma \] (16)

- Three effects follow:
 1. real interest rates are high when β is low
Real interest rates

- We can use (15) to think about the economics of real interest rates
- Suppose that $u'(c) = c^{-\gamma}$, power utility
 - marginal utility declines with consumption (see figure)
- Suppose no uncertainty. Then,
 \[R_f = \frac{1}{\beta} \left(\frac{c_{t+1}}{c_t} \right)^\gamma \] (16)

- Three effects follow:
 1. real interest rates are high when β is low
 2. real interest rates are high when consumption growth is high
Real interest rates

- We can use (15) to think about the economics of real interest rates
- Suppose that \(u'(c) = c^{-\gamma} \), power utility
 - marginal utility declines with consumption (see figure)
- Suppose no uncertainty. Then,
 \[
 R_f = \frac{1}{\beta} \left(\frac{c_{t+1}}{c_t} \right)^{\gamma} \tag{16}
 \]

- Three effects follow:
 1. real interest rates are high when \(\beta \) is low
 2. real interest rates are high when consumption growth is high
 3. real interest rates are more sensitive to consumption growth when \(\gamma \) is high
Real interest rates

- We can use (15) to think about the economics of real interest rates
- Suppose that $u'(c) = c^{-\gamma}$, power utility
 - marginal utility declines with consumption (see figure)
- Suppose no uncertainty. Then,

$$R_f = \frac{1}{\beta^\gamma} \left(\frac{c_{t+1}}{c_t} \right)^\gamma \quad (16)$$

- Three effects follow:
 1. real interest rates are high when β is low
 2. real interest rates are high when consumption growth is high
 3. real interest rates are more sensitive to consumption growth when γ is high

 1. when utility is highly curved, investor cares more about a smooth consumption profile
Marginal utility and gamma

Graph showing the relationship between marginal utility (u') and gamma (γ) for different values of gamma: $\gamma = 2$, $\gamma = 5$, $\gamma = 1.1$, and $\gamma = 0.5$. The graph illustrates how the marginal utility decreases as the gamma increases, indicating diminishing marginal utility. The x-axis represents different levels of gamma, and the y-axis shows the corresponding marginal utility values. The graph helps in understanding the impact of risk aversion on asset prices within the context of the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT).
Thus, when γ is higher it takes a larger Δr_f to get people to change their consumption path.
Risk-free rate

- Thus, when γ is higher it takes a larger Δr_f to get people to change their consumption path
- Now add uncertainty. We need to say how c varies. Suppose that c is lognormally distributed
Risk-free rate

- Thus, when γ is higher it takes a larger Δr_f to get people to change their consumption path.
- Now add uncertainty. We need to say how c varies. Suppose that c is lognormally distributed.
 - this means that the log of c, written as $\ln c$ is normally distributed.
Thus, when γ is higher it takes a larger Δr_f to get people to change their consumption path.

Now add uncertainty. We need to say how c varies. Suppose that c is lognormally distributed.

This means that the log of c, written as $\ln c$ is normally distributed.

Then

$$\ln R_f = \delta + \gamma E_t(\Delta \ln c_{t+1}) - \frac{\gamma^2}{2} \sigma_t^2(\Delta \ln c_{t+1})$$ \hspace{1cm} (17)$$

where $\beta = e^{-\delta}$, $\Delta \ln c_{t+1}$ is the growth rate of consumption, and $\sigma_t^2(\Delta \ln c_{t+1})$ is the variance of the growth rate of consumption.
Risk-free rate

- Thus, when γ is higher it takes a larger Δr_f to get people to change their consumption path.
- Now add uncertainty. We need to say how c varies. Suppose that c is lognormally distributed.
 - This means that the log of c, written as $\ln c$ is normally distributed.
- Then
 \[
 \ln R_f = \delta + \gamma E_t(\Delta \ln c_{t+1}) - \frac{\gamma^2}{2}\sigma_t^2(\Delta \ln c_{t+1}) \tag{17}
 \]
 where $\beta = e^{-\delta}$, $\Delta \ln c_{t+1}$ is the growth rate of consumption, and $\sigma_t^2(\Delta \ln c_{t+1})$ is the variance of the growth rate of consumption.
- Expression (17) can be decomposed into three terms:
 \[
 \ln R_f = \text{impatience term} + \text{growth of } c \text{ term} - \text{variance of growth of } c \text{ term}
 \]
Implications

- Expression (17) implies previous 3 effects, plus new one:
Expression (17) implies previous 3 effects, plus new one:

- real interest rates are low when consumption growth is more volatile
Implications

Expression (17) implies previous 3 effects, plus new one:

- real interest rates are low when consumption growth is more volatile
- precautionary demand for savings
Implications

- Expression (17) implies previous 3 effects, plus new one:
 - real interest rates are low when consumption growth is more volatile
 - precautionary demand for savings

- We can also read the expression backwards
Implications

- Expression (17) implies previous 3 effects, plus new one:
 - real interest rates are low when consumption growth is more volatile
 - precautionary demand for savings

- We can also read the expression backwards
 - consumption growth is high when r_f is high
Implications

- Expression (17) implies previous 3 effects, plus new one:
 - real interest rates are low when consumption growth is more volatile
 - precautionary demand for savings

- We can also read the expression backwards
 - consumption growth is high when r_f is high
 - consumption is less sensitive to r_f when γ is high because they desire smoother consumption
Implications

- Expression (17) implies previous 3 effects, plus new one:
 - real interest rates are low when consumption growth is more volatile
 - precautionary demand for savings

- We can also read the expression backwards
 - consumption growth is high when r_f is high
 - consumption is less sensitive to r_f when γ is high because they desire smoother consumption

- Notice that with power utility γ governs intertemporal substitution, risk aversion and precautionary savings. More general utility functions allow this to be separated
Risk Corrections

- Use the basic price equation again, $p = E(mx)$
Risk Corrections

- Use the basic price equation again, \(p = E(mx) \)
- Recall the definition of covariance:
 \[
 \text{cov}(m, x) = E(mx) - E(m)E(x)
 \]
Risk Corrections

- Use the basic price equation again, $p = E(mx)$
- Recall the definition of covariance:
 \[\text{cov}(m, x) = E(mx) - E(m)E(x) \]
- So
 \[p = E(m)E(x) + \text{cov}(m, x) \]
Risk Corrections

- Use the basic price equation again, \(p = E(mx) \)
- Recall the definition of covariance:
 \[
 \text{cov}(m, x) = E(mx) - E(m)E(x)
 \]
- So
 \[
 p = E(m)E(x) + \text{cov}(m, x)
 \]
- or, using (15) to write:
 \[
 p = \frac{E(x)}{R_f} + \text{cov}(m, x)
 \] (18)
Risk Corrections

- Use the basic price equation again, \(p = E(mx) \)
- Recall the definition of covariance:
 \[\text{cov}(m, x) = E(mx) - E(m)E(x) \]
- So
 \[p = E(m)E(x) + \text{cov}(m, x) \]
- or, using (15) to write:
 \[p = \frac{E(x)}{R_f} + \text{cov}(m, x) \] (18)

- the first term on RHS is discounted present value, second term is risk adjustment
Risk Corrections

- It is useful to substitute for m in (18)

\[
p = \frac{E(x)}{R_f} + \frac{cov[\beta u'(c_{t+1}), x_{t+1}]}{u'(c_t)}
\]

(19)

Since u_0 declines as c_r rises, an asset's price is lower if the payo¤ positively covaries with consumption. Conversely, an asset that pays o¤ when consumption is low has a higher price. Insurance riskier securities must o¤er higher returns to get investors to hold them.
Risk Corrections

- It is useful to substitute for m in (18)

$$p = \frac{E(x)}{R_f} + \frac{\text{cov}[\beta' u'(c_{t+1}), x_{t+1}]}{u'(c_t)}$$ \hspace{1cm} (19)

- Since u' declines as c rises, an asset’s price is lower if the payoff positively covaries with consumption.
Risk Corrections

- It is useful to substitute for m in (18)

\[
p = \frac{E(x)}{R_f} + \frac{\text{cov}[\beta u'(c_{t+1}), x_{t+1}]}{u'(c_t)}
\]

(19)

- Since u' declines as c rises, an asset’s price is lower if the payoff positively covaries with consumption.
 - Conversely, an asset that pays off when consumption is low has a higher price.

Since u' declines as c rises, an asset’s price is lower if the payoff positively covaries with consumption.
 - Conversely, an asset that pays off when consumption is low has a higher price.
Risk Corrections

- It is useful to substitute for m in (18)

$$p = \frac{E(x)}{R_f} + \frac{cov[\beta u'(c_{t+1}), x_{t+1}]}{u'(c_t)}$$ \hspace{1cm} (19)

- Since u' declines as c rises, an asset’s price is lower if the payoff positively covaries with consumption
 - Conversely, an asset that pays off when consumption is low has a higher price
 - Insurance
Risk Corrections

- It is useful to substitute for \(m \) in (18)

\[
p = \frac{E(x)}{R_f} + \frac{\text{cov}[\beta u'(c_{t+1}), x_{t+1}]}{u'(c_t)}
\]

(19)

- Since \(u' \) declines as \(c \) rises, an asset’s price is lower if the payoff positively covaries with consumption.

 - Conversely, an asset that pays off when consumption is low has a higher price.
 - Insurance
 - riskier securities must offer higher returns to get investors to hold them.
Idiosyncratic risk

- It is not risk itself that is compensated with return, only risk correlated with m matters.
Idiosyncratic risk

- It is not risk itself that is compensated with return, only risk correlated with m matters.

- We can use (18) to see this. Suppose that some asset has a payoff that has zero covariance with m: $\text{cov}(m, x) = 0$.

It is not risk itself that is compensated with return, only risk correlated with m matters.
Idiosyncratic risk

- It is not risk itself that is compensated with return, only risk correlated with m matters.

 - We can use (18) to see this. Suppose that some asset has a payoff that has zero covariance with m: $\text{cov}(m, x) = 0$.

 - Then from (18) $p = \frac{E(x)}{R_f}$, so that

$$\frac{E(x)}{p} = R_f$$ \hspace{1cm} (20)
Idiosyncratic risk

- It is not risk itself that is compensated with return, only risk correlated with \(m \) matters.

- We can use (18) to see this. Suppose that some asset has a payoff that has zero covariance with \(m \): \(\text{cov}(m, x) = 0 \).

- Then from (18) \(p = \frac{E(x)}{R_f} \), so that

\[
\frac{E(x)}{p} = R_f \tag{20}
\]

- thus the rate of return on this asset equals the risk-free rate, no matter how large is the variance of its payoff, \(\sigma^2(x) \).
Idiosyncratic risk

- It is not risk itself that is compensated with return, only risk correlated with m matters.
 - We can use (18) to see this. Suppose that some asset has a payoff that has zero covariance with m: $cov(m, x) = 0$.
 - Then from (18) $p = \frac{E(x)}{R_f}$, so that

$$\frac{E(x)}{p} = R_f$$

(20)

- thus the rate of return on this asset equals the risk-free rate, no matter how large is the variance of its payoff, $\sigma^2(x)$.

- We could let $\sigma^2(x) \longrightarrow$ a billion, but if $cov(m, x) = 0$, it will still yield only the risk-free rate. Even if people are totally risk averse.
Idiosyncratic risk

- The reason why idiosyncratic risk does not earn a risk premium should be obvious.
Idiosyncratic risk

- The reason why idiosyncratic risk does not earn a risk premium should be obvious.
- Buying this asset does not impact the variance of your consumption stream, so why should you need a risk premium to hold it.
The reason why idiosyncratic risk does not earn a risk premium should be obvious.

Buying this asset does not impact the variance of your consumption stream, so why should you need a risk premium to hold it.

One way of saying this is that there is no compensation for *idiosyncratic* risk.
Idiosyncratic risk

- The reason why idiosyncratic risk does not earn a risk premium should be obvious.

- Buying this asset does not impact the variance of your consumption stream, so why should you need a risk premium to hold it.

 - One way of saying this is that there is no compensation for *idiosyncratic risk*.

 - Only *systematic* risk generates a risk correction.
Idiosyncratic risk

- The reason why idiosyncratic risk does not earn a risk premium should be obvious.

- Buying this asset does not impact the variance of your consumption stream, so why should you need a risk premium to hold it.

 - One way of saying this is that there is no compensation for idiosyncratic risk.
 - Only systematic risk generates a risk correction.
 - Systematic risk is that part of the variance that is correlated with m. Idiosyncratic risk is the residual variance.
Idiosyncratic risk

- The reason why idiosyncratic risk does not earn a risk premium should be obvious.
- Buying this asset does not impact the variance of your consumption stream, so why should you need a risk premium to hold it.
 - One way of saying this is that there is no compensation for *idiosyncratic* risk.
 - Only *systematic* risk generates a risk correction.
 - Systematic risk is that part of the variance that is correlated with m. Idiosyncratic risk is the residual variance.
 - This is the risk that can be diversified away. Since it is not systematically related to m, we can avoid this risk. Idiosyncratic risk is like the residual in a regression equation.
Systematic risk

\[\sigma_p^2 = \sigma^2(e)/n \]

Figure: Systematic Risk
We can also use the basic pricing equation setup to think about the equity premium. That is, how large is the expected return on stocks over a risk-free asset like Treasury Bills. Turns out we have an interesting puzzle.
We can also use the basic pricing equation setup to think about the equity premium. That is, how large is the expected return on stocks over a risk-free asset like Treasury Bills. Turns out we have an interesting puzzle.

It is useful to start with a measure called the *Sharpe ratio*, the ratio of the mean excess return to standard deviation:
$$ \frac{E(R_i) - R_f}{\sigma(R_i)} $$.
Equity Premium

We can also use the basic pricing equation setup to think about the equity premium. That is, how large is the expected return on stocks over a risk-free asset like Treasury Bills. Turns out we have an interesting puzzle.

It is useful to start with a measure called the Sharpe ratio, the ratio of the mean excess return to standard deviation: \(\frac{E(R_i) - R_f}{\sigma(R_i)} \).

This is the slope of the capital allocation line.
Equity Premium

- We can also use the basic pricing equation setup to think about the equity premium. That is, how large is the expected return on stocks over a risk-free asset like Treasury Bills. Turns out we have an interesting puzzle.

- It is useful to start with a measure called the *Sharpe ratio*, the ratio of the mean excess return to standard deviation: \[
\frac{E(R_i) - R_f}{\sigma(R_i)}.
\]

 - This is the slope of the capital allocation line.

 - The maximum Sharpe ratio is thus given by the tangent to the market portfolio: \[
 \frac{E(R_P) - R_f}{\sigma(R_P)},
 \]
 as in figure 5.
Sharpe Ratio

Figure: Sharpe Ratio Efficient Portfolios
Equity Premium

To derive the maximum Sharpe ratio, start from the basic equation

\[1 = E(mR_i) \]
\[= E(m)E(R_i) + \rho_{m,R_i}\sigma(R_i)\sigma(m) \]
To derive the maximum Sharpe ratio, start from the basic equation

\[
1 = E(mR_i) \\
= E(m)E(R_i) + \rho_{m,R_i}\sigma(R_i)\sigma(m)
\]

where we used the definition of covariance.
To derive the maximum Sharpe ratio, start from the basic equation

\[1 = E(mR_i) = E(m)E(R_i) + \rho_{m,R_i}\sigma(R_i)\sigma(m) \]

where we used the definition of covariance.

We know that \(1 = E(m)R_f\), so we can subtract this from both sides and re-arrange:

\[E(R_i) = R_f - \rho_{m,R_i}\sigma(R_i)\frac{\sigma(m)}{E(m)} \] (21)

Notice that a correlation coefficient cannot be greater than unity, so this gives us a bound on asset prices:
To derive the maximum Sharpe ratio, start from the basic equation

\[1 = E(mR_i) \]

\[= E(m)E(R_i) + \rho_{m,R_i}\sigma(R_i)\sigma(m) \]

where we used the definition of covariance.

we know that \(1 = E(m)R_f \), so we can subtract this from both sides and re-arrange:

\[E(R_i) = R_f - \rho_{m,R_i}\sigma(R_i) \frac{\sigma(m)}{E(m)} \] (21)

notice that a correlation coefficient cannot be greater than unity, so this gives us a bound on asset prices:

\[|E(R_i) - R_f| \leq \sigma(R_i) \frac{\sigma(m)}{E(m)} \] (22)
From (22) we derive the maximum Sharpe ratio, since
\(\rho_{m,R_p} = 1 \):

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{\sigma(m)}{E(m)} = \sigma(m)R_f
\]

(23)

this is an important result: the maximum Sharpe ratio – the slope of the capital allocation line – is governed by the volatility of \(m \), the stochastic discount factor.
From (22) we derive the maximum Sharpe ratio, since \(\rho_{m,R_p} = 1 \):

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{\sigma(m)}{E(m)} = \sigma(m)R_f
\]

(23)

this is an important result: the maximum Sharpe ratio – the slope of the capital allocation line – is governed by the volatility of \(m \), the stochastic discount factor.

What does \(\sigma(m) \), depend on? We know that

\[m = \beta \frac{u'(c_{t+1})}{u'(c_t)} \]

so it depends on the volatility of consumption, and on how curved is the utility function – that is how little we like irregular consumption.
From (22) we derive the maximum Sharpe ratio, since $\rho_{m,R_P} = 1$:

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{\sigma(m)}{E(m)} = \sigma(m)R_f
\]

(23)

this is an important result: the maximum Sharpe ratio – the slope of the capital allocation line – is governed by the volatility of m, the stochastic discount factor.

What does $\sigma(m)$, depend on? We know that $m = \beta \frac{u'(c_{t+1})}{u'(c_t)}$, so it depends on the volatility of consumption, and on how curved is the utility function – that is how little we like irregular consumption.

If consumption growth is volatile we have a higher equity premium – a larger Sharpe ratio.
Equity Premium

if we had power utility then

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{\sigma \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right]}{E \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right]}
\]

Over the last 50 years in the US, real stock returns have averaged \(\sim 9\% \) with \(\sigma = 16\% \), while the real return on T-bills is about 1\%.

If consumption growth was lognormal

\[
E(R_P) - R_f = \sigma \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right]
\]

\[
E \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right] = \gamma \sigma \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right]
\]

\[
E \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right] = \frac{\sigma}{E \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right]}
\]
Equity Premium

- if we had power utility then

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{\sigma \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right]}{E \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right]}
\]

- and if consumption growth was lognormal

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} \approx \gamma \sigma (\Delta \ln c)
\] \hspace{1cm} (24)

Over the last 50 years in the US, real stock returns have averaged \(\sim 9\% \) with \(\sigma = 16\% \), while the real return on T-bills is about 1\%.
Equity Premium

Using this in (24) we have

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{.09 - .01}{.16} = .5
\]

But consumption growth is rather smooth, with \(\sigma \approx 1\% \). This implies that \(\gamma = 50 \) to reconcile (24).
Equity Premium

- Using this in (24) we have

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{0.09 - 0.01}{0.16} = 0.5
\]

But consumption growth is rather smooth, with \(\sigma \approx 1\%\). This implies that \(\gamma = 50\) to reconcile (24).

- This is the equity premium puzzle. Why are the returns to equity so high?
Equity Premium

- Using this in (24) we have

\[
\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{0.09 - 0.01}{0.16} = 0.5
\]

But consumption growth is rather smooth, with \(\sigma \approx 1\% \). This implies that \(\gamma = 50 \) to reconcile (24).

- This is the equity premium puzzle. Why are the returns to equity so high?

 - Consumption does not seem volatile enough to explain it, and people do not seem so risk averse \((\gamma = 4 \) would seem pretty high).
Using this in (24) we have

$$\frac{E(R_P) - R_f}{\sigma(R_P)} = \frac{.09 - .01}{.16} = .5$$

But consumption growth is rather smooth, with $\sigma \approx 1\%$. This implies that $\gamma = 50$ to reconcile (24).

This is the equity premium puzzle. Why are the returns to equity so high?

- Consumption does not seem volatile enough to explain it, and people do not seem so risk averse ($\gamma = 4$ would seem pretty high).
- Very hard to explain, many have tried.