1 Discrete distributions

1.1 The binomial distribution

Consider a bowl containing \(r \) red balls and \(N - r \) white balls, where \(0 < r < N \). Draw randomly \(n \) balls from this bowl with replacement, i.e., shake the bowl thoroughly, draw blindfolded a ball, take the blindfold off, observe the color of the ball you have drawn, put the ball back in the bowl (and the blindfold on!), and repeat this procedure \(n \) times.

The number of ways you can draw an ordered sequence of \(k \) red balls and \(n - k \) white balls in this way is: \(r^k (N - r)^{n-k} \), and the number of ways you can draw an ordered sequence of \(n \) balls (of any color) is \(N^n \). Thus, the probability that you draw a sequence of \(k \) red balls and \(n - k \) white balls in a particular order is: \(r^k (N - r)^{n-k} / N^n = (p)^k (1 - p)^{n-k} \), where \(p = r/N \). But the number of ordered sequences of \(k \) red balls and \(n - k \) white balls is:

\[
\binom{n}{k} = \frac{n!}{k! (n-k)!}.
\]

Therefore, if \(Y \) is the number of red balls you have drawn, then

\[
P(Y = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, 1, ..., n.
\]

This distribution is called the Binomial \((n, p)\) distribution.

The expectation of \(Y \) is:

\[
E[Y] = n.p
\]

1.2 The negative binomial distribution

Consider a sequence of independent repetitions of a random experiment with constant probability \(p \) of success. Let the random variable \(Y \) be the total number of failures in this sequence before the \(m \)-th success, where \(m \geq 1 \). Thus, \(Y + m \) is equal to the number of trials necessary to produce exactly \(m \) successes. The probability \(P(Y = k) \), \(k = 0, 1, 2, ..., \), is the product of the probability of obtaining exactly \(m - 1 \) successes in the first \(k + m - 1 \) trials, which is equal to the (Binomial) probability

\[
\binom{k + m - 1}{m - 1} p^{m-1} (1 - p)^{k+m-1-(m-1)},
\]

1
and the probability p of a success on the $(k + m)$-th trial:

$$P(Y = k) = \binom{k + m - 1}{m - 1} p^m (1 - p)^k, \ k = 0, 1, 2, \ldots.$$

This distribution is called the Negative Binomial (m, p) distribution.

The expectation of Y is:

$$E[Y] = m \left(p^{-1} - 1 \right).$$

1.3 The Poisson distribution

Let Y_n be Binomial (n, p_n) distributed:

$$P(Y_n = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}, \ k = 0, 1, ..., n,$$

and suppose that for $n = 1, 2, ..., p_n \downarrow 0$ as $n \to \infty$, such that for $n > c, np_n = c$, where $c > 0$ is a constant. Then for fixed $k = 0, 1, 2, ..., \lim_{n \to \infty} P(Y_n = k) = P(Y = k)$, where Y is a random variable with probability function

$$P(Y = k) = \exp(-c) \frac{c^k}{k!}.$$

This distribution is called the Poisson (c) distribution. Since it is the limit of a Binomial (n, p) distribution with $p = c/n$ for $n > c$, the Poisson distribution is often used to model the distribution of rare events.

The expectation of Y is:

$$E[Y] = c.$$

2 Count data models

These three distributions are often used to model count data. Let Y be a dependent variable which is a count of something, and let X be a vector of explanatory variables, including 1 for the constant term.
2.1 Conditional binomial

If \(Y \) has a finite largest value \(n \), say, so that \(P[Y \in \{0, 1, 2, ..., n\}] = 1 \), then the conditional distribution of \(Y \) may be modelled as a conditional Binomial distribution:

\[
P(Y = k | X) = \binom{n}{k} p(X)^k (1 - p(X))^{n-k}, \quad k = 0, 1, ..., n,
\]

where

\[
p(X) = F(\beta'X)
\]

with \(F \) a distribution function and \(\beta \) is a parameter vector. Then the conditional expectation of \(Y \) given \(X \) is

\[
E[Y|X] = n.p(X) = n.F(\beta'X).
\]

Note that if component \(\beta_i \) of \(\beta \) is positive, then the corresponding component \(X_i \) of \(X \) has a positive effect on \(E[Y|X] \):

\[
\frac{\partial E[Y|X]}{\partial X_i} = n.f(\beta'X)\beta_i > 0,
\]

where \(f \) is the density corresponding to \(F \).

If \(Y \) does not have a finite upper bound, then either the negative binomial distribution or the Poisson distribution may be used to model \(P[Y = k | X] \).

2.2 Conditional negative binomial

In the negative binomial case the model is

\[
P(Y = k | X) = \binom{k + m - 1}{m - 1} p(X)^m (1 - p(X))^k, \quad k = 0, 1, 2,
\]

where

\[
p(X) = F(-\beta'X),
\]

with \(F \) a distribution function and \(\beta \) is a parameter vector. The reason for the minus sign is that then

\[
E[Y|X] = m. \left(p(X)^{-1} - 1 \right) = m. \left(F(-\beta'X)^{-1} - 1 \right)
\]

is increasing in \(\beta'X \), so that the effect of a component \(X_i \) of \(X \) on \(E[Y|X] \) is positive if component \(\beta_i \) of \(\beta \) is positive:

\[
\frac{\partial E[Y|X]}{\partial X_i} = m. \left(f(-\beta'X)F(-\beta'X)^{-2} \right) \beta_i > 0.
\]
2.3 Conditional Poisson

In the Poisson case the model for $P(Y = k|X)$ is:

$$P(Y = k|X) = \exp(-c(X))\frac{c(X)^k}{k!},$$

where

$$c(X) = \exp(\beta' X).$$

Again, if component β_i of β is positive, then the corresponding component X_i of X has a positive effect on $E[Y|X]$:

$$\frac{\partial E[Y|X]}{\partial X_i} = \exp(\beta' X)\beta_i > 0.$$

3 Ordered probability models

If the discrete dependent variable Y represents an ordering of attributes, so that a larger Y means more or better, but not a count of something, and Y has a finite largest value n, say, so that n is the smallest natural number such that $P[Y \in \{0, 1, 2, ..., n\}] = 1$, then $P[Y = k|X]$ may be modelled as

$$P[Y = 0|X] = F(-\beta' X)$$
$$P[Y = 1|X] = F(-\beta' X + \mu_1) - F(-\beta' X)$$
$$P[Y = 2|X] = F(-\beta' X + \mu_2) - F(-\beta' X + \mu_1)$$

.................................
$$P[Y = n - 1|X] = F(-\beta' X + \mu_{n-1}) - F(-\beta' X + \mu_{n-2})$$
$$P[Y = n|X] = 1 - P[Y = 0|X] - \ldots - P[Y = n - 1|X],$$

where

$$0 < \mu_1 < \mu_2 < \ldots < \mu_{n-1},$$

and F is a distribution function. The ordering of the parameters μ_j can be enforced easily by reparametrizing the μ_j’s as

$$\mu_1 = \exp(\gamma_1)$$
$$\mu_2 = \exp(\gamma_1) + \exp(\gamma_2)$$

.................................
$$\mu_{n-1} = \exp(\gamma_1) + \exp(\gamma_2) + \ldots + \exp(\gamma_{n-1})$$
The interpretation of the coefficients in β is explained in the guided tour on discrete dependent variables models.

4 Qualitative response models

If Y takes only two values, $Y = 0$ and $Y = 1$, then a the conditional distribution of Y given X may be modelled as:

$$P[Y = 1|X] = F(\beta'X),$$ \hspace{1cm} (4)

where F is a distribution function. If component β_i of β is positive, then the corresponding component X_i of X has a positive effect on $P[Y = 1|X]$:

$$\frac{\partial P[Y = 1|X]}{\partial X_i} = F'(\beta'X)\beta_i > 0.$$

Moreover, if Y has a finite largest value n, say, so that n is the smallest natural number such that $P[Y \in \{0, 1, 2, \ldots, n\}] = 1$, and Y represents different attributes rather than a count or an ordering, the multinomial logit model may be an appropriate model:

$$P[Y = 0|X] = \frac{1}{1 + \exp(\beta_1'X) + \ldots + \exp(\beta_n'X)}$$

$$P[Y = k|X] = \frac{\exp(\beta_k'X)}{1 + \exp(\beta_1'X) + \ldots + \exp(\beta_n'X)}, \quad k = 1, 2, \ldots, n.$$

5 The choice of the distribution function F

In EasyReg International you have two options for the distribution function F in (1), (2), (3) and (4), the Logit specification

$$F(u) = \frac{1}{1 + \exp(-u)}$$

and the Probit specification

$$F(u) = \int_{-\infty}^{u} \frac{\exp(-z^2/2)}{\sqrt{2\pi}} dz.$$