p. 13, Exercise 11: kth powers \mapsto powers of k

p. 19, line 8$: Chapter 5 \mapsto Chapter 6

p. 21, Exercise 30: fourth Fibonacci number \mapsto fifth Fibonacci number

p. 46, Exercise 72: $n \geq n_m \mapsto n \leq n_m$

p. 58, Exercise 84: missing the difficulty rating

p. 59, line 2$: +\left(\frac{1}{8}(n+1)\ldots\right) \mapsto +\sum_{n \geq 0} \left(\frac{1}{8}(n+1)\ldots\right)$

p. 59, line 1$: +\sum_{n \geq 0} \left(-\frac{1}{16} q^{2n} + \frac{2}{9} q^{3n} + \ldots\right) \mapsto +\sum_{n \geq 0} \left(\frac{2}{9} q^{3n} + \ldots\right)$

p. 60, line 2$: +\left(\frac{1}{8} \left(\frac{n}{2} + 1\right)\ldots\right) \mapsto +\sum_{n \geq 0} \left(\frac{1}{8} \left(\frac{n}{2} + 1\right)\ldots\right)$

p. 60, line 3$: +\sum_{n \geq 0} \left(-\frac{1}{16} q^{2n} + \frac{2}{9} q^{3n} + \ldots\right) \mapsto +\sum_{n \geq 0} \left(\frac{2}{9} q^{3n} + \ldots\right)$

p. 60, line 5$: \left[\frac{-1}{16}, \frac{17}{36}\right] \mapsto [0, \frac{17}{36}]$

p. 60, lines 9, 10$: (n+4) \mapsto (n+3)$

p. 60, line 10$: (n^2 + 23n + 85) \mapsto (n+4)(n+19) \text{ or } (n^2 + 23n + 76)$

p. 61, Equ (6.15): (6.15) \mapsto (6.12) (The equation (6.15) is the identity with numbering next to (6.11).)

p. 62, line 3$: \text{It would be better to include the definition of the notation } h|j.$

p. 72, line 6$: + q^{n-j} \left[\begin{array}{c} n - 1 \\ j \end{array}\right] \mapsto + q^j \left[\begin{array}{c} n - 1 \\ j \end{array}\right]$}

p. 83, lines 5–6$: (8.13) \text{ and } (8.14) \mapsto (8.16) \text{ and } (8.16b) \text{ (Here Equation (8.16b) means the one on the line 4.)}$

p. 84, line 9$: (8.15) \text{ and } (8.16) \mapsto (8.16) \text{ and } (8.16b)$

p. 85, line 11$: (8.10) \mapsto (8.9)$

p. 97, lines 6$, 3$: n \mapsto N
p. 98, line 4: $\mu_3 \mapsto \mu_4$

p. 98, line 8: $\mu_4 \mapsto \mu_5$

p. 98, line 12: $\mu_5 \mapsto \mu_6$

p. 103, line 3 and p. 104, line 10: $q^{h-j} \mapsto q^{h+j}$

p. 103, Exercises 133 and 134: I would like to know the solution to Exercise 133 that you are expecting. When I arrived at Exercise 133, I thought that the solution most natural for readers would be to mimic the proof of the formula π_2, namely, to use the recursion (10.4) (and the result on π_2 just obtained). However it seems to be the solution to Exercise 134. So I concluded that the expected solution to Exercise 133 was a different one. It is possible to get a combinatorial proof of the formula for π_3 given in Exercise 133 avoing the use of the recursion (10.4), for example by considering the meanings of each term on the right hand side of the formula. If it is what you are expecting, I believe that some hint should be given, otherwise readers will proceed the same way as I went on.

p. 104, line 3↑: $q^{h+1} \mapsto q^{h+j}$, and $- \left[\frac{r + h}{r - 1} \right] \mapsto -q \left[\frac{r + h}{r - 1} \right]$

p. 105, line 3: $q^{-h-j} \mapsto q^{-2j}$

p. 113, line 3: “nonreduced height” of a staircase was not defined in Chapter 3.

p. 124, line 8: the 2000 Putnum Examination \mapsto the 1999 Putnum Examination

p. 127, line 10: $1 + a_1 + a_2 + \cdots \mapsto 1 + a_0 + a_1 + \cdots$, and $\prod_{n=1}^{N} \mapsto 1 + a_0 + a_1 + \cdots$

p. 127, line 7↑: $m \geq n \mapsto m \geq N$

p. 128, line 10: $(1 + a_1)(1 + a_2) \mapsto (1 + a_0)(1 + a_1)$

p. 128, line 11: $(1 + |a_1|)(1 + |a_2|) \mapsto (1 + |a_0|)(1 + |a_1|)$

p. 129, Andrews (1971c): 76 \mapsto 78
p. 130, Atkin and Swinnerton-Dyer: (1953) \rightarrow (1954)

p. 131, Subbarao: It would be better to exchange the numbering (1971a) and (1971b), since (1971b) appeared in an earlier volume.

p. 133, Exercise 18: row (resp. column) \leftrightarrow column (resp. row)

p. 135, Exercise 116: Exercise 2 of Chapter 4 \leftrightarrow Exercise 46

p. 136–138: The numbers 147–166 should be 149–168. (Add 2 to each number!)

p. 140, line 1↑: Jockush \leftrightarrow Jockusch