Exercises 1.4 Revised

2. Construct the addition and multiplication table for \mathbb{Z}_n when n is 4, and when n is 5.

3. Find the following inverses if they exist:
 (i) the inverse of 31 modulo 11
 (ii) the inverse of 237 modulo 91
 (iii) the inverse of 18 modulo 19.

5. Show that no integer of the form $8k + 7$ can be the sum of three squares.

7. Let p be a prime number. Show that
 $$(p-1)! \equiv -1 \pmod{p}.$$

8. Give a new proof of the Fundamental Theorem of Arithmetic that starts as follows:
 Proof. Let S be the set of integers each > 1 that do not have a unique factorization into primes.