A Note On a Method of Erdős and the Stanley-Elder Theorems

by
George E. Andrews and Emeric Deutsch

December 30, 2015

Abstract

An enumeration method of Erdős is applied to provide a massive generalization of the theorems of Stanley and Elder on integer partitions.

Key words: Partition, Stanley’s Theorem, Elder’s Theorem

Subject Classification Code: 05A17, 05A19, 11P81

1 Introduction

In [4], Erdős provided the asymptotics of the partition function $p(n)$ by elementary means. His starting point was the identity of Ford [7] (probably going back to Euler):

\[np(n) = \sum_{j=1}^{n} p(n - j)\sigma(j), \tag{1.1} \]

where $\sigma(j)$ is the sum of divisors of j. The standard proof of (1.1) is by logarithmic differentiation of ([7], also [1, p.98])

\[\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1 - q^n}. \tag{1.2} \]
However, Erdős wanted to avoid even this amount of analysis. So he rewrote \((1.1)\) as follows
\[
np(n) = \sum_{v \geq 1} \sum_{k \geq 1} vp(n - kv),
\]
and then he remarked: "We easily obtain \((1.3)\) by adding up all the partitions of \(n\), and noting that \(v\) occurs in \(p(n - v)\) partitions." We assume he is telegraphing that \(v\) appears twice in \(p(n - 2v)\) partitions, etc.

This same counting method makes transparent a very general theorem in partitions.

Definition 1. A partition configuration, \(A\), is a non-decreasing sequence of non-negative integers, \((a_1, \ldots, a_k)\) with length \(k\) and weight \(w(A) = a_1 + a_2 + \cdots + a_k\).

Definition 2. A partition, \(\lambda: \lambda_1 + \lambda_2 + \cdots + \lambda_m\) (\(1 \leq \lambda_1 \leq \lambda_2 \cdots \leq \lambda_m\)) is said to have a partition configuration \(A\) if there is a subset of parts of \(\lambda\) of the form \(a_1 + j, a_2 + j, \ldots, a_k + j\) for some \(j \geq 1\).

For example, the partition \((2 + 4 + 4 + 5 + 8 + 9)\) contains an instance of \(A = (0, 3, 6, 7)\) because the parts 2, 5, 8, 9 exceed by 2 the successive entries of \(A\).

Theorem 1. Given a partition configuration \(A\), in each partition of \(n\) we count the number of distinct configurations \(A\) therein and then sum over all partitions of \(n\). Call this sum \(p_A(n)\). Then
\[
p_A(n) = p(k; n - w(A)),
\]
where \(p(k; n)\) is the total number of appearances of \(k\) in the partitions of \(n\).

As an example of Theorem 1, we take \(A: (0, 1, 2)\) (having length \(k = 3\) and weight \(w(A) = 3\)) and \(n = 10\). The partitions of 10 containing the partition configuration \(A\) are \(1 + 1 + 1 + 1 + 1 + 2 + 3, 1 + 1 + 1 + 2 + 2 + 3, 1 + 2 + 2 + 2 + 3, 1 + 1 + 2 + 3 + 3\) and \(1 + 2 + 3 + 4\) which contain \(A\) \(1 + 1 + 1 + 1 + 2 = 6\) times. So \(p_A(10) = 6\). As for \(p(3; 10 - 3) = p(3; 7)\) we see that the partitions of 7 containing 3’s are \(1 + 1 + 1 + 1 + 3, 1 + 1 + 2 + 3, 2 + 2 + 3, 1 + 3 + 3, 3 + 4\). So \(p(3; 7) = 1 + 1 + 1 + 2 + 1 = 6\), the total number of 3’s in the partitions of 7.

In section 2, we use the Erdős method to provide a short proof of Theorem 1 together with the theorems of Elder and Stanley. In section 3, we extend these ideas to a question concerning divisibility restrictions on parts. We conclude with some general observations.
2 Proof of Theorem 1.

We remark following Erdős that to obtain \(p_A(n) \) there must be \(p(n - ((a_1 + j) + \cdots + (a_k + j))) \) partitions which contain the partition configuration \(A \) in the form

\[
(a_1 + j) + (a_2 + j) + \cdots + (a_k + j).
\]

Hence

\[
\sum_{n \geq 0} p_A(n)q^n = \sum_{j=1}^{\infty} \frac{q^{(a_1+j)+(a_2+j)+\cdots+(a_k+j)}}{\prod_{n=1}^{\infty} (1 - q^n)}
= \frac{q^{w(A)} \sum_{j=1}^{\infty} q^{kj}}{\prod_{n=1}^{\infty} (1 - q^n)}
= \frac{1 - q^k}{(1 - q^k)^2 \prod_{n=1}^{\infty} (1 - q^n)}
= q^{w(A)} \left(q^k + 2q^{2k} + 3q^{3k} + \cdots\right) \prod_{n=1}^{\infty} (1 + q^n + q^{2n} + q^{3n} + \cdots)
= q^{w(A)} \sum_{n \geq 0} p(k, n)q^n,
\]

and Theorem 1 follows by comparing coefficients of \(q^n \) in the extremes of (2.1).

\[\square\]

Corollary 2 (Stanley’s Theorem [2],[8]). The number of 1’s in the partitions of \(n \) is equal to the number of parts that appear at least once in a given partition of \(n \), summed over all partitions of \(n \).

Proof. Take \(A : (0) \) in Theorem 1.

A more general theorem is attributed to Paul Elder.

Corollary 3 (Elder’s Theorem [2][8]). The number of \(j \)'s appearing in the partitions of \(n \) is equal to the number of parts that appear at least \(j \) times in a given partition of \(n \), summed over all partitions of \(n \).

Proof. Take \(A : (0, 0, \ldots, 0) \) of length \(j \) in Theorem 1.

Corollary 4. In each partition of \(n \) count the number of sequences of consecutive integers of length \(k \). Then sum these numbers over all partitions of \(n \). This equals the number of appearances of \(k \) in the partitions of \(n - k(k-1)/2 \).

Proof. In Theorem 1 take \(A : (0, 1, \ldots, k - 1) \).

\[\square\]
3 Divisibility of Parts

The method of Erdős can be further extended in many ways.

Theorem 5. Given $k \geq 1$. In each partition of n we count the number of times a part divisible by k appears uniquely (i.e. is not a repeated part); then sum these numbers over all the partitions of n. The result is equal to the number of appearances of $2k$ in the partitions of $n + k$.

Example. $k = 1$, $n = 5$. There are eight singletons in the partitions of 5: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. There are eight 2’s in the partitions of 6: 4 + 2, 3 + 2 + 1, 2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1.

Remark. The case $k = 1$ was published as a problem in [3].

Proof. The generating function for multiples of k being unique parts is

$$
\sum_{j=1}^{\infty} \prod_{n \neq kj} q^{kj} = \frac{1}{\prod_{n=1}^{\infty} \left(1 - q^n\right)} \sum_{j=1}^{\infty} q^{kj} \left(1 - q^{kj}\right)
$$

$$
= \frac{1}{\prod_{n=1}^{\infty} \left(1 - q^n\right)} \left(\frac{q^k}{1 - q^k} - \frac{q^{2k}}{1 - q^{2k}} \right)
$$

$$
= \frac{q^k}{(1 - q^{2k})} \cdot \prod_{n=1}^{\infty} \left(1 - q^n\right)
$$

$$
q^{-k} \left(q^{2k} + 2q^{3k} + 3q^{4k} + \cdots \right) \prod_{n=1 \atop n \neq 2k}^{\infty} \frac{1}{1 - q^n},
$$

and this last expression is the generating function for the number of appearances of $2k$ in the partitions of $n + k$.

4 Conclusion

It is clear that the scope of Theorem 1 could be generalized to account for results like Theorem 4. We should also note that Dastidar and Gupta [2] have generalized the Stanley and Elder theorems where they add what they term ”packets” of size k to partitions, and this count equals the number of appearances of k in the partitions of $n + k$.

4
Finally we note the charming survey "A Fine Rediscovery" by R. Gilbert [8], which provides a detailed history of the Stanley and Elder theorems and points out that N. J. Fine was the original discoverer of both theorems [5],[6].

References

The Pennsylvania State University University Park, PA 16802 gea1@psu.edu

Polytechnic Institute of New York University, Brooklyn, NY, 11201 emericdeutsch@msn.com