CHARACTERISATION OF VIBRATORY, PULSATION AND NOISE SOURCES

Goran Pavić
INSA Lyon, France
Objectives:

- predict the transmission source → surroundings
- allow meaningful spec formulation
- troubleshoot the causes of excessive levels

Difficulty: source excitation depends on its environment!

Challenge: independent source characterisation.

Problem: no norms / standards!

Industrial techniques:

- sound power
- vibration level
- p-p pulsations

Academic techniques:

- holography
- inverse BEM
- beamforming

assembler

supplier

sub supplier

sub supplier

not suitable

sub supplier
source needs a double descriptor

source resistance
open-loop voltage

Mechanical / acoustic
coupled velocity \(V_{cc} \) =

\[S \]

\[R \]

resistance \(R_L \)
impedance \(Z_R \)
- blocked excitation F_b?
- source impedance Z_S?

Difficulties:
- forces and moments
- translations and rotations
- multiple coupling points.

How to get F_b? $V_c = Z_c^{-1}F_b$

How to get Z_S? $Z_c = Z_S + Z_R$

The coupling (operational) forces transmitted to any surroundings of impedance Z will read: $F_c = Z(Z_S + Z)^{-1}F_b$

To make this work: a convenient **calibration receiver** is needed!
smart receiver

6-DOF screw sensor
6-DOF wrench sensor
Fit 6 simple sensors!

Excitation by 6 external forces:
The block measures both source descriptors in all DoF

Source coupled
Source removed

Excitation by 6 external forces:

source

soft mount solid block source foot
Example:

4 connection points

Equivalent force approach

- **Equivalent force:** Resultant of interface wrenches!
- **Equivalent screw:** Mean of interface screws!

Equation: \(4 \text{ wrenches} \times (24 \times 1 \text{ vector}) = \text{impedance} (24 \times 24 \text{ matrix}) \times 4 \text{ screws} \times (24 \times 1 \text{ vector})\)
measurement practice

water pump
compressor
hydromotor
equivalent force application: electro-pump

characterisation

vertical

prediction

lateral
equivalent force application: compressor
insertion of resilient mounts

Blocked forces

Operational forces:
- bolted mounts
- vertical
pulsation

- blocked pressure
- impedance

Difficulties:
- impedance measured with the source operating
- blocked pressure impossible to measure directly
multiple load technique

blocked source pressure p_S
coupled pressure p_c

$$P_c = \frac{Z_L}{Z_S + Z_L} P_S$$

≥2 different loads: $Z_{L1}, Z_{L2}…$

coupled pressure

pulsation characteristic

multiple
laboratory measurement: gear pump

5b, 600 rpm
(gear meshing: 150 Hz)

10b, 1500 rpm
(gear meshing: 375 Hz)
industrial measurement: vane pump

- **measured**
- **predicted**

Graphs

- **5b, 2000 rpm**
- **3b, 1000 rpm**
- **7b, 3000 rpm**
airborne noise

- blocked pressure
- impedance

Difficulties:
- source coupled to receiver through a surface
- physical surface of source extremely complex
- source power depends on the surroundings.

<table>
<thead>
<tr>
<th>Source Space</th>
<th>Receiver Space</th>
</tr>
</thead>
</table>

- define an interface surface S.
- separate into **source space** and **receiver space**
- identify blocked pressure of running source P_b
- identify impedance of idle source space Z_S
1. build a simple dummy similar to original source
2. fit the dummy with \(K \) small drivers
3. measure source noise in \(N \) control points
4. replace the source by the dummy
5. establish TRF drivers / control points \(T (N \times K) \)
6. compute driver strengths \(Q \) out of \(P = TQ \) \(Q (K \times 1) \)

Source model applicable to any receiver environment!

dummy source: principle
dummy source: demonstration

200 Hz

1000 Hz
Semi-anechoic space
transfer functions →
analytical computation

dummy source: vibrating box
dummy source: excavator
The normal vibration velocity can be measured by an accelerometer array.

- real source \rightarrow set of monopoles
- reproduce normal boundary velocity
- diffraction disregarded (small sources)
application to a loudspeaker cabinet

Field computed using:
- equivalent source method
- mirror image principle

- measured
- predicted

![Diagram showing field computation results with measured and predicted data points.](Image)
summary

source characterisation methods → industrial applications

dual source descriptor → blocked excitation and impedance

best way to characterise a source → measurement

unified approach to vibration, pulsation and noise

vibration: smart receiver ****
equivalent force method ***

pulsation: multi-load method **

noise: dummy source method ***
equivalent source approach **
coupling surface method *****

* simple ***** difficult
how to define surface impedance?

In either case:
\[p, v : N \times 1 \text{ vector} \]
\[Z : N \times N \text{ matrix} \]
\[p = Z v \]

expand into \(N \) eigenfunctions

discretize into \(N \) patches
coupling using patches: examples

142 eigenfunctions

patch size < $\lambda/3$
calibration block impedance

steel block, 70 kg
L 400mm
W 280mm
H 80mm