Number of ground measurements needed for narrow aircraft sonic boom metric 90% confidence intervals

Will Doebler and Victor W. Sparrow

Five Sonic Boom Metrics Analyzed

- A-, B-, E-weighted sound exposure level
- Stevens Mark VII Perceived Level
- Indoor Sonic Boom Annoyance Predictor
- Sound energy summation
- Perceived tone loudness equivalent
- Includes building vibration penalty

Removing microphones from average

Every, every 2nd, every 3rd,... mic

Randomly select various numbers of mics

Sets of adjacent mics with various lengths

Elbow Analysis

- Narrow confidence intervals are desirable
- The three microphone removal techniques have an elbow character
- To the right of the elbow bend, there is low benefit for including more microphones
- To the left of the elbow bend, there is great benefit for including more measurements
- In each case shown, the elbow occurs at roughly 7 microphones

Conclusions

- Elbow bends occur between 5 and 10 microphones
- SEL_B has the narrowest confidence intervals
- Use at least 7 microphones for ground measurements of sonic booms to see around ± 4 dB 90% confidence intervals

Acknowledgements

The authors appreciate the support of W. Doebler’s research assistantship from Penn State’s Applied Research Laboratory and NASA for the use of the SCAMP data set. This work was funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 41 under FAA Award Number: 13-G-AFES-PHU. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.