Finite State Simulations and Bisimulations for Discrete-time Piecewise Affine System

Sanam Mirzazad-Barijough and Ji-Woong Lee

Department of Electrical Engineering
Pennsylvania State University, University Park, USA

December 15, 2011
Table of Contents

1 Introduction
 - Motivation
 - Previous Work
 - Problem Statement

2 Nonconservative Stability Analysis

3 Existence of Finite-State Bisimulations

4 Conclusions
1. **Introduction**
 - Motivation
 - Previous Work
 - Problem Statement

2. **Nonconservative Stability Analysis**

3. **Existence of Finite-State Bisimulations**

4. **Conclusions**
Introduction

Motivating Example: DC-DC Power Converter
Stability Analysis

- Construction of Lyapunov functions ⇒ common or multiple Lyapunov function approaches.

- Inherently conservative approaches:
 - If they fail ⇒ No alternative solution approach.

Reachability and Verification

- Abstraction of the infinite state hybrid system ⇒ Finite State Symbolic Models (Bisimulation).

- If a bisimulation is not obtained ⇒ No partial conclusion.
 - Some classes of hybrid systems admit bisimulation.
1. Construction of a nested sequence of symbolic models.
2. Analysis of stability for each symbolic model.

Our Approach

- Exploit the link between Lyapunov analysis and symbolic models.
- Using simulations for Nonconservative stability analysis.
- Existence of bisimulations.
Outline

1. Introduction
 - Motivation
 - Previous Work
 - Problem Statement

2. Nonconservative Stability Analysis

3. Existence of Finite-State Bisimulations

4. Conclusions
Introduction
Piecewise Affine (PWA) Systems

Discrete-time PWA System

\[S = \{(A_1, b_1), \ldots, (A_N, b_N)\}. \quad D = \{D_1, \ldots, D_N\} \text{ a partition of } \mathbb{R}^n. \]

\[x(t + 1) = A_{\theta(t)}x(t) + b_{\theta(t)} \quad \text{if } x(t) \in D_i. \]

State in terms of Initial state

Given a switching sequence \(\theta = (\theta(0), \theta(1), \ldots) \)

\[x(t) = \Phi_\theta(t, t_0)x(t_0) + f_\theta(t, t_0) \]

where

\[\Phi_\theta(t, t_0) = \begin{cases} I_n & \text{if } t = t_0 \\ A_{\theta(t-1)} \cdots A_{\theta(t_0)} & \text{if } t > t_0, \end{cases} \]

\[f_\theta(t, t_0) = \sum_{s=t_0}^{t-1} \Phi_\theta(t, s + 1)b_{\theta(t)} \]
Introduction

Counterexample [Stanford & Urbano, 1994]

$x(t + 1) = \begin{cases} A_1x(t) & \text{if } x(t) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \text{ with } |x_1| > 3|x_2| \\ A_2x(t) & \text{otherwise,} \end{cases}$

$A_1 = \begin{bmatrix} 1/2 & 0 \\ 0 & 2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}.$

- With $c = (0.8)^{-1}$ and $\lambda = (0.8)^{1/6} \Rightarrow \|x(t)\| \leq c\lambda^t\|x(0)\|$.
- Small perturbation of state leads to divergence.
- There is no stabilizing switching sequence for this system [Stanford & Urbano, 1994].
- This examples motives us to use a stronger stability notion.
Introduction

Stability Definition

Stability of a Piecewise Affine system

Let $P \subseteq \mathbb{R}^n$. The PWA system is *uniformly exponentially stable on P* if there exist $c \geq 1$ and $\lambda \in (0, 1)$ such that, for all θ generated by initial states $x(0) \in P$

$$\|\Phi_\theta(t, t_0)\| \leq c\lambda^{t-t_0},$$

$$\|f_\theta(t, t_0)\| \leq c,$$

$$\|f_\theta(t, t_0)\| \rightarrow 0 \text{ as } t - t_0 \rightarrow \infty$$

Stability of a Switching Sequence

A set Θ is *uniformly exponentially stable* if there exist $c \geq 1$ and $\lambda \in (0, 1)$ such that for all $\theta \in \Theta$.

$$\|\Phi_\theta(t, t_0)\| \leq c\lambda^{t-t_0}$$
Introduction
Problem Statement: Our Approach

Stability Analysis Problem

For a given PWA system find the “biggest” subset C of the state space \mathbb{R}^n such that the PWA system is uniformly exponentially stable on C.

- Construction of a nested sequence of symbolic models:
 - Ignore stability analysis.
 - Obtain switching structure-preserving state-space partitions.
 - Construct a sequence of symbolic models for PWA system s.t.
 \[G_0 \succeq G_1 \succeq G_2 \succeq \ldots \succeq \text{PWA} \]

- Construction of Lyapunov functions:
 - Choose a symbolic model.
 - Obtain all generated switching sequences.
 - Solve Lyapunov inequalities over all these switching sequences.
Outline

1. Introduction
 - Motivation
 - Previous Work
 - Problem Statement

2. Nonconservative Stability Analysis

3. Existence of Finite-State Bisimulations

4. Conclusions
A state-space partition and the associated directed graph ⇒ Simulation.
Symbolic models
Switching Sequences

Switching Sequences Generated by Graphs

- Choose node (11) which represents $D_{11} \in D_1 \Rightarrow (1, 1)$
- There is an edge from (11) to (12) $\Rightarrow (1, 2)$
- There is an edge from (12) to (21) $\Rightarrow (2, 1)$

Then $\theta = (1, 1, 2, 1, \ldots)$ is a *switching sequence generated by* (11) or D_{11}.

![Diagram of switching sequences generated by graphs](image)
Stabilizing Switching Sequences

Let $\Theta(G_L)$ be the set of all switching sequences generated by G_L:

$$\Theta(G_0) \supseteq \Theta(G_1) \supseteq \ldots \supseteq \Theta(\text{PWA})$$

Theorem [Lee and Dullerud, 2006]

A set Θ of switching sequences is uniformly exponentially stable if and only if there exist a $M \geq 0$ and matrices $X_{i_1 \ldots i_M} \succ 0$ s.t.

$$A_{i_M}^T X_{i_1 \ldots i_M} A_{i_M} - X_{i_0 \ldots i_{M-1}} \prec 0 \quad (1)$$

for all $(i_0, \ldots, i_M) \in \{1, \ldots, N\}^{M+1}$ “occurring” in Θ.

For some L, (1) is satisfied for $\Theta(G_L) \implies$ (1) is satisfied for $\Theta(\text{PWA})$.
Stability Analysis

The PWA system is stable on $D_{(i_0,\ldots,i_L)}$ if for all (j_0,\ldots,j_L) that are the nodes of irreducible components of G_L reachable from the node (i_0,\ldots,i_L)

$$A_{j_0}^T X_{(j_1,\ldots,j_L)} A_{j_0} - X_{(j_0,\ldots,j_{L-1})} \prec 0, \quad X_{(j_0,\ldots,j_L)} \succ 0$$

and $b_{j_0} = \ldots = b_{j_L} = 0$.

- If G_L is bisimulation \Rightarrow iff.

- Two irreducible components: (11) and (21, 12). Only (21, 12) is reachable form (22).

- The PWA system is stable on D_{22} if $A_2 A_1$ is stable and $b_1 = b_2 = 0$.
Stability Analysis: Nonconservatism

Let P_L denote the union of all stable cells in \mathcal{D}_L. Suppose for some i, D_i is bounded, contains the origin in the interior, A_i is stable and $b_i = 0$. Then the PWA system is not uniformly exponentially stable on any subset of $\mathbb{R}^n \setminus (\bigcup_{L=0}^{\infty} P_L)$.

$$\Theta(G_0) \supseteq \Theta(G_1) \supseteq \ldots \rightarrow \Theta(PWA)$$
Stability Analysis
Illustrative Example: Stability Analysis via Simulations

\[A_1 = \begin{bmatrix} 0.5 & -1 \\ -1 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0.25 & 0 \\ 1 & 0.5 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 0.5 & 0 \\ 1 & 1.5 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad b_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \]

- \(P_1 = D_2 \).
- No conclusion for \(D_1 \) and \(D_3 \).
Stability Analysis
Illustrative Example Cont’d: Stability Analysis via Simulations

\mathcal{D}_1

\mathcal{D}_2

- $P_1 = P_0 \cup D_{12} \cup D_{32}$.
- PWA is not stable on D_{11}.
- No conclusion for D_{13} and D_{33}.
Stability Analysis
Illustrative Example Cont’d: Stability Analysis via Simulations

\[D_2 \]

\[D_3 \]

\[P_\infty \]
Outline

1. Introduction
 - Motivation
 - Previous Work
 - Problem Statement

2. Nonconservative Stability Analysis

3. Existence of Finite-State Bisimulations

4. Conclusions
Existence of Bisimulations
Discrete Transitions [Vladimerou et al., 2008]

Discrete Transitions

Let $\theta = (\theta(0), \theta(1), \ldots)$. If $\theta(t) \neq \theta(t + 1) \Rightarrow$ a discrete transition.

Finite Number of Discrete Transitions

Let $Q \subset \mathbb{R}^n$ be a bounded invariant polyhedron. Suppose:

(a) $\exists \epsilon > 0$ and $\phi \in \mathbb{R}^n$ s.t.

$$\phi^T (A_i x + b_i - x) \geq \epsilon \|A_i x + b_i - x\|$$

whenever $x \in D_i \cap Q$.

(b) $\exists a_- \text{ and } a_+ \in \mathbb{R}$ s.t.

$$a_- \leq \phi^T x \leq a_+$$

for all $x \in Q$.

\[\begin{align*}
D_1 &\quad x_1 \\
D_2 &\quad x_2 \\
D_3 &\quad x_3 \\
D_4 &\quad x_4 \\
\end{align*} \]
Existence of Bisimulations
Discrete Transitions [Vladimerou et al., 2008] Cont’d

Finite Number of Discrete Transitions
Cont’d

(c) \(\exists \gamma > 0 \) s.t.

\[
\| A_i x + b_i - x \| \geq \gamma
\]

whenever \(x \in D_i \cap Q \) and \(A_i x + b_i \in D_j \cap Q \) with \(i \neq j \).

Then

number of discrete transitions \(\leq \frac{a_+ - a_-}{\epsilon \gamma} \).
Existence of Bisimulations

Finite State Bisimulation

Existence of a Bisimulation

Suppose for a piecewise affine system

- number of discrete transitions ≤ \(K \).
- \(\exists \tilde{L} \) s.t. \(D(i,\ldots,i) \in D_-^{\tilde{L}} = \emptyset \) or \(D(i,\ldots,i) \in D_-^{\tilde{L}} = D(i,\ldots,i) \in D_-^{\tilde{L}+1} \).

Then \(\Theta(G_L) = \Theta(\text{PWA}) \) for some \(L \leq \tilde{L}K \).

- All switching sequences are eventually constant.
Existence of Bisimulations
Illustrative Example: Existence of Bisimulations

Let

\[A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1/4 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1/2 & 0 \\ 1/4 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1/4 & 0 \\ 1 & 1/2 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \]

\[b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 3/2 \\ 1/4 \end{bmatrix}, \quad b_3 = \begin{bmatrix} 1/4 \end{bmatrix}, \quad b_4 = \begin{bmatrix} 0 \end{bmatrix}, \]

\[D_1 = \left\{ [x_1 \ x_2]^T \in \mathbb{R}^2 : x_1 < -1 \right\}, \]

\[D_2 = \left\{ [x_1 \ x_2]^T \in \mathbb{R}^2 : -1 \leq x_1 < 0 \right\}, \]

\[D_3 = \left\{ [x_1 \ x_2]^T \in \mathbb{R}^2 : 0 \leq x_1 < 1 \right\}, \]

\[D_4 = \left\{ [x_1 \ x_2]^T \in \mathbb{R}^2 : 1 \leq x_1 \right\}. \]

With \(\gamma = 1, \ \varepsilon = 0.25, \ \phi = [1 \ 1/2]^T, \ a_- = -5/2 \) and \(a_+ = 5/2 \)

number of discrete transitions \(\leq 20 \)
Existence of Bisimulations
Illustrative Example Cont’d: Existence of Bisimulations

- For some $L \leq 20$, $\Theta(G_L) = \Theta(\text{PWA})$.
- $\Theta(G_2) = \Theta(\text{PWA})$.

\[D_0 \]
\[D_2 \]
\[D_3 \]

\[G_0 \]
\[G_2 \]
Outline

1. Introduction
 - Motivation
 - Previous Work
 - Problem Statement

2. Nonconservative Stability Analysis

3. Existence of Finite-State Bisimulations

4. Conclusions
Conclusions

Summary

- Link between Lyapunov analysis and symbolic models.
- Simulations for Nonconservative stability analysis.
- Sufficient conditions for existence of bisimulations.

Future Work

- Application to real-world examples.
- Controller synthesis.