Path-by-Path Optimal Control of Switched and Markovian Jump Linear Systems

Ji-Woong Lee

Department of Electrical Engineering
Pennsylvania State University, University Park, USA

December 11, 2008

Joint work with G. E. Dullerud (UIUC) and P. P. Khargonekar (UF)
Flight Modes of Migrating Raptors

- **Cruise** (straight line flight):
 \[x(t + 1) = f_1(x(t), w(t)) \]
- **Thermalling** (circling flight):
 \[x(t + 1) = f_2(x(t), w(t)) \]

State-Space Representation

- **State Equation**: \[x(t + 1) = f_{\theta(t)}(x(t), w(t)) \]
- **Switching Sequences**: \(\theta = (\theta(0), \theta(1), \ldots) \in \Theta \subset \{1, 2\}^{\infty} \)

- **Filtering Problem**: Track flying birds under arbitrary switching between flight modes.
Introduction
Motivating Example: Markovian Jump Systems

Macroeconomic Modes

- **Fast Growth:**
 \[x(t + 1) = f_1(x(t), u(t), w(t)) \]
- **Slow Growth:**
 \[x(t + 1) = f_2(x(t), u(t), w(t)) \]

State-Space Representation

- **State Equation:**
 \[x(t + 1) = f_{\theta(t)}(x(t), u(t), w(t)) \]
- **Markov Switching:**
 \[P(\theta(t + 1) = j | \theta(t) = i) = p_{ij} \]

- **Control Problem:** Use optimal monetary policy to control unemployment, inflation, etc.
Introduction
Control Theoretic Issues

Finite-Horizon Problems

■ Emphasis on short-term optimization
■ Not concerned with stability

Infinite-Horizon Problems

■ Emphasis on long-term planning and stability
■ Looks too much ahead. ⇒ conservative

Our Goals

■ Optimize finite-horizon performance.
■ Maintain stability.
Summary of Contributions

Previous Work

Receding-Horizon Control

- Short-term optimization vs. long-term planning tradeoff
- Long control horizon required for stability
- Restricted to mode-dependent controllers

Discrete-Time Switched/Markovian Jump Linear Systems

- Convex programming–based exact analysis and synthesis
- Path-dependent controllers
- Restricted to worst-case/long-term average performance optimization
Summary of Contributions
This Work

Receding-Horizon-Type Control

- No restriction to control horizon for stability
- Path-dependent controllers
- Offline optimization

Discrete-Time Switched/Markovian Jump Linear Systems

- Convex programming–based exact analysis and synthesis
- Path-by-path Pareto-optimal performance for switched systems
- Short-term average performance optimization for Markovian jump systems
Definitions
State-Space Representations of Plant and Controller

Switched Linear Plant

\[
\begin{align*}
x(t + 1) &= A_{\theta(t)}x(t) + B_{1,\theta(t)}w(t) + B_{2,\theta(t)}u(t), \\
z(t) &= C_{1,\theta(t)}x(t) + D_{11,\theta(t)}w(t) + D_{12,\theta(t)}u(t), \\
y(t) &= C_{2,\theta(t)}x(t) + D_{21,\theta(t)}w(t)
\end{align*}
\]

Path-Dependent Linear Dynamic Output Feedback Controller

\[
\begin{align*}
x_K(t + 1) &= A_{K,(\theta(t-L),...,\theta(t))}x_K(t) + B_{K,(\theta(t-L),...,\theta(t))}y(t), \\
u(t) &= C_{K,(\theta(t-L),...,\theta(t))}x_K(t) + D_{K,(\theta(t-L),...,\theta(t))}y(t),
\end{align*}
\]

where \(L \in \{0, 1, \ldots \} \) is TBD.
Definitions

Closed-Loop Systems

Closed-Loop State

\[\tilde{x}(t) = [x(t) \ x_K(t)]^T \]

Closed-Loop Modes

\[\theta_L(t) = \begin{cases} (0, \ldots, 0, \theta(0), \ldots, \theta(t)) & \text{if } t < L; \\ \text{\(L-t\) times} \\ (\theta(t-L), \ldots, \theta(t)) & \text{if } t \geq L. \end{cases} \]

Closed-Loop System

\[\begin{align*} \tilde{x}(t+1) &= \tilde{A}_{\theta_L(t)} \tilde{x}(t) + \tilde{B}_{\theta_L(t)} w(t), \\
z(t) &= \tilde{C}_{\theta_L(t)} \tilde{x}(t) + \tilde{D}_{\theta_L(t)} w(t) \end{align*} \]
Definitions
Stability

Uniform Exponential Stability of Switched Systems
Closed-loop system is uniformly exponentially stable if, whenever \(w = 0 \), there exist \(c > 0 \) and \(\lambda \in (0, 1) \) s.t.
\[
\|\tilde{x}(t)\| \leq c \lambda^{t-s} \|\tilde{x}(s)\|
\]
for \(t \geq s \), \(\tilde{x}(s) \in \mathbb{R}^{n+nK} \), \(\theta \in \Theta \).

Almost Sure Uniform Exponential Stability of Markovian Jump Systems
Closed-loop system is a.s. uniformly exponentially stable if, whenever \(w = 0 \), there exist \(c > 0 \) and \(\lambda \in (0, 1) \) s.t., with probability one,
\[
\|\tilde{x}(t)\| \leq c \lambda^{t-s} \|\tilde{x}(s)\|
\]
for \(t \geq s \), \(\tilde{x}(s) \in \mathbb{R}^{n+nK} \).
Path-By-Path Performance of Switched Systems

Closed-loop system satisfies T-step path-by-path performance levels $\gamma(i_0,\ldots,i_T) > 0$ if, whenever $\tilde{x}(0) = 0$ and w is white,

$$\frac{1}{T+1} \sum_{t=s}^{s+T} \mathbb{E} \|z(t)\|^2 < \gamma^2(\theta(s),\ldots,\theta(s+T)), \quad \forall s \geq 0, \forall \theta \in \Theta.$$

Finite-Step Average Performance of Markovian Jump Systems

Closed-loop system satisfies T-step average performance level $\gamma > 0$ if, whenever $\tilde{x}(0) = 0$ and w is white,

$$\frac{1}{T+1} \sum_{t=s}^{s+T} \mathbb{E} \|z(t)\|^2 < \gamma^2, \quad \forall s \geq 0.$$
Uniform Exponential Stability of Switched Systems

Switched system \(x(t+1) = A_{\theta(t)}x(t), \theta \in \Theta \), is uniformly exponentially stable iff there exist \(M \geq 0 \) and \(Y_{(i_1,...,i_M)} > 0 \) s.t.

\[
A_{i_M}Y_{(i_0,...,i_{M-1})}A_{i_M}^T - Y_{(i_1,...,i_M)} < 0
\]

for all \((i_0, \ldots, i_M)\) “occurring” in \(\Theta \).

- **\(M = 0 \)** (Common Lyapunov function):
 \[
 A_{\theta(t)}YA_{\theta(t)}^T - Y < 0, \quad \forall t \geq 0
 \]

- **\(M = 1 \)** (Mode-dependent Lyapunov function):
 \[
 A_{\theta(t)}Y_{\theta(t-1)}A_{\theta(t)}^T - Y_{\theta(t)} < 0, \quad \forall t \geq 0
 \]

- **\(M = 2 \)** (Path-dependent Lyapunov function):
 \[
 A_{\theta(t)}Y_{(\theta(t-2),\theta(t-1))}A_{\theta(t)}^T - Y_{(\theta(t-1),\theta(t))} < 0, \quad \forall t \geq 0
 \]
Admissible Switching Sequences of Markovian Jump Systems

- \(P = (p_{ij}) \), transition probability matrix
- \(p = (p_i) \), initial probability distribution
- \(\Theta(P, p) = \{ \theta : p_{\theta(0)} > 0, \ p_{\theta(t)}\theta(t+1) > 0 \} \)

Almost Sure Uniform Exponential Stability of Markovian Jump Systems

Markovian jump system \(x(t+1) = A_{\theta(t)}x(t) \) is a.s. uniformly exponentially stable iff there exist \(M \geq 0 \) and \(Y(i_1, \ldots, i_M) > 0 \) s.t.

\[
A_{i_M} Y(i_0, \ldots, i_{M-1}) A_{i_M}^T - Y(i_1, \ldots, i_M) < 0
\]

for all \((i_0, \ldots, i_M)\) “occurring” in \(\Theta(P, p) \).
Path-by-Path Performance of Switched Linear Systems

The switched system
\[
\begin{align*}
 x(t+1) &= A_{\theta(t)}x(t) + B_{\theta(t)}w(t), \\
 z(t) &= C_{\theta(t)}x(t) + D_{\theta(t)}w(t)
\end{align*}
\]

is uniformly exponentially stable and satisfies \(T \)-step path-by-path performance levels \(\gamma(i_0,\ldots,i_T) > 0 \) iff there exist \(M \geq 0 \) and \(Y(j_1,\ldots,i_M) > 0 \) s.t.

\[
A_{i_M}Y(i_0,\ldots,i_{M-1})A_{i_M}^T - Y(i_1,\ldots,i_M) < -B_{i_M}B_{i_M}^T,
\]

\[
\frac{1}{T+1} \sum_{t=M}^{M+T} \text{tr} \left(C_{it}Y(i_{t-M},\ldots,i_{t-1})C_{it} + D_{it}D_{it}^T \right) < \gamma^2(i_M,\ldots,i_{M+T})
\]

for all \((i_0,\ldots,i_{M+T}) \) “occurring” in \(\Theta \).
Results
Performance Analysis

Finite-Step Average Performance of Markovian Jump Linear Systems

Let $\mathbf{p} = \mathbf{pP}$. The Markovian jump system is a.s. uniformly exponentially stable and satisfies T-step average performance level $\gamma > 0$ iff there are $\gamma(i_0, \ldots, i_T) > 0$ s.t.

$$\mathbf{A}_{i_M} \mathbf{Y}(i_0, \ldots, i_{M-1}) \mathbf{A}_{i_M}^T - \mathbf{Y}(i_1, \ldots, i_M) < -\mathbf{B}_{i_M} \mathbf{B}_{i_M}^T,$$

$$\frac{1}{T+1} \sum_{t=M}^{M+T} \text{tr} \left(\mathbf{C}_{i_t} \mathbf{Y}(i_{t-M}, \ldots, i_{t-1}) \mathbf{C}_{i_t} + \mathbf{D}_{i_t} \mathbf{D}_{i_t}^T \right) < \gamma^2(i_{M}, \ldots, i_{M+T})$$

for all (i_0, \ldots, i_{M+T}) “occurring” in $\Theta(\mathbf{P}, \mathbf{p})$, and s.t.

$$\sum_{(i_0, \ldots, i_T) \text{ “occurring” in } \Theta(\mathbf{P}, \mathbf{p})} \pi(i_0, \ldots, i_T) \gamma^2(i_0, \ldots, i_T) \leq \gamma^2$$

with T-step probabilities $\pi(i_0, \ldots, i_T) = p_{i_0} p_{i_0 i_1} \cdots p_{i_{T-1} i_T}$.
Synthesis Condition for Switched Linear Systems

There exists a controller s.t. the closed-loop system is uniformly exponentially stable and satisfies T-step path-by-path performance levels $\gamma(i_0,\ldots,i_T) > 0$ iff there exist $M \geq 0$, $R_{(j_1,\ldots,j_M)} > 0$, $S_{(j_1,\ldots,j_M)} > 0$, $Z_{(j_0,\ldots,j_M)} > 0$, and $W_{(j_0,\ldots,j_M)}$ s.t.

$$H(i_0,\ldots,i_M) + F_{i_M}^T W(i_0,\ldots,i_M) G_{i_M} + G_{i_M}^T W_{(i_0,\ldots,i_M)} F_{i_M} < 0,$$

$$\hat{H}(i_0,\ldots,i_M) + \hat{F}_{i_M}^T W(i_0,\ldots,i_M) \hat{G}_{i_M} + \hat{G}_{i_M}^T W_{(i_0,\ldots,i_M)} \hat{F}_{i_M} < 0,$$

$$\frac{1}{T+1} \sum_{t=M}^{M+T} \text{tr} Z_{(i_t-M,\ldots,i_t)} < \gamma^2_{(i_M,\ldots,i_{M+T})}$$

for all (i_0,\ldots,i_{M+T}) “occurring” in Θ, where F_i, G_i, \hat{F}_i, \hat{G}_i are const. and H_{\ldots}, \hat{H}_{\ldots} are linear in R_{\ldots}, S_{\ldots}, Z_{\ldots}, and W_{\ldots}.
Results
Controller Synthesis

- **Synthesis Condition for Markovian Jump Linear Systems:**
 Similar

- **Recovery of Controller Coefficients:** Straightforward
 [Scherer et al. (1997); Masubuchi et al. (1998)]

- **Path-Dependent Controller:**

 \[
 x_K(t + 1) = A_K,\theta(t-L),...,\theta(t))x_K(t) + B_K,\theta(t-L),...,\theta(t))y(t),
 \]

 \[
 u(t) = C_K,\theta(t-L),...,\theta(t))x_K(t) + D_K,\theta(t-L),...,\theta(t))y(t),
 \]

 where one can take \(L = M \) and \(x_K(t) \in \mathbb{R}^n \).
Numerical Illustration
A Markovian Jump Linear Plant

- **Mode 1:**
 \[x(t + 1) = 0.5x(t) + [1 \ 0]w(t), \quad y(t) = x(t) + [1 \ 0]w(t) \]

- **Mode 2:**
 \[x(t+1) = x(t) + [1 \ 0]w(t) + u(t), \quad y(t) = x(t) + [0 \ 1]w(t) \]

- **Mode 3:**
 \[x(t + 1) = 0.5x(t) + [1 \ 0]w(t), \quad y(t) = x(t) + [0 \ 1]w(t) \]

- **Common Output to Regulate:**
 \[z(t) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix}u(t) \]

- **Transition Probability Matrix:**
 \[P = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

- **Initial Probability Distribution:**
 \[p = \begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix} \Rightarrow p = pP \]
Numerical Illustration
Numerical Solution

- **Infimum** T-step average performance level γ for path length M:

<table>
<thead>
<tr>
<th>M</th>
<th>$T = 0$</th>
<th>$T = 2$</th>
<th>$T = 4$</th>
<th>$T = 6$</th>
<th>$T = 8$</th>
<th>$T = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.3280</td>
<td>1.3280</td>
<td>1.3280</td>
<td>1.3280</td>
<td>1.3280</td>
<td>1.3280</td>
</tr>
<tr>
<td>1</td>
<td>1.1837</td>
<td>1.1837</td>
<td>1.1837</td>
<td>1.1837</td>
<td>1.1837</td>
<td>1.1837</td>
</tr>
<tr>
<td>2</td>
<td>1.1837</td>
<td>1.1830</td>
<td>1.1824</td>
<td>1.1822</td>
<td>1.1821</td>
<td>1.1820</td>
</tr>
<tr>
<td>3</td>
<td>1.1837</td>
<td>1.1829</td>
<td>1.1823</td>
<td>1.1820</td>
<td>1.1818</td>
<td>1.1817</td>
</tr>
<tr>
<td>4</td>
<td>1.1837</td>
<td>1.1828</td>
<td>1.1822</td>
<td>1.1819</td>
<td>1.1817</td>
<td>1.1816</td>
</tr>
<tr>
<td>5</td>
<td>1.1837</td>
<td>1.1828</td>
<td>1.1822</td>
<td>1.1819</td>
<td>1.1817</td>
<td>1.1817</td>
</tr>
</tbody>
</table>

- **Consistency**: Infimum γ converges to the optimal infinite-horizon performance level 1.1808 as T increases with $M = 4$.

- **Controller**: First-order controller whose coefficients at time t depend on $(\theta(t - 4), \ldots, \theta(t))$.
Conclusions
Optimal Control of Switched and Markovian Jump Linear Systems

Path-By-Path Optimal Control

- T-step path-by-path performance for switched systems
- T-step average performance for Markovian jump systems
- Guaranteed stability for all forward lengths T and for sufficiently large, often small, backward lengths M

Special Cases

- If $N > 1$, as $T \to \infty$, T-step avg. performance \to infinite-horizon LQG performance
- If $N = 1$ (i.e., LTI case), then T-step path-by-path performance \to infinite-horizon LQG performance for all T

Question: What are good applications?