SCREENING NATIVE PLANTS OF NORTHEASTERN UNITED STATES FOR SENSITIVITY TO OZONE.

T. Orendović, J.M. Skelly, M.J. Sainz, G. Smith, J.E. Savage, J.A. Ferdinand
The Pennsylvania State University, University Park, PA USA 16802

Introduction

Terrestrial ecosystems have been identified as the single most important biogeochemical source of atmospheric pollution due to the contributions of the United States and its neighbors to the global atmosphere. The fire hazard season in the United States is of great concern to land managers, and even more so to the public. This fire hazard season is influenced by the meteorological conditions that prevail during the summer months. The fire hazard season is also influenced by the availability of moisture in the soil and the vegetation. The fire hazard season is influenced by the availability of moisture in the soil and the vegetation. The fire hazard season is influenced by the availability of moisture in the soil and the vegetation.

During the growing season of 2000 we fumigated Acer saccharinum, Asclepias incarnata, Cercis Canadensis, Campsis Rhus, and Vernonia altissima to determine their sensitivity to ozone exposure. The plants were grown in growth chamber treatments of 30, 60, 90, and 120 ppb ozone concentration. The plants were analyzed for symptoms of sensitivity to ozone exposure. The symptoms observed were mild chlorosis, adaxial leaf surface pigmentation (stippling) and premature leaf senescence. The symptoms observed were mild chlorosis, adaxial leaf surface pigmentation (stippling) and premature leaf senescence. The symptoms observed were mild chlorosis, adaxial leaf surface pigmentation (stippling) and premature leaf senescence. The symptoms observed were mild chlorosis, adaxial leaf surface pigmentation (stippling) and premature leaf senescence. The symptoms observed were mild chlorosis, adaxial leaf surface pigmentation (stippling) and premature leaf senescence. The symptoms observed were mild chlorosis, adaxial leaf surface pigmentation (stippling) and premature leaf senescence.