EUCLID
Euclid is said to have been younger than the first pupils of Plato but older than Archimedes, which would place the time of his flourishing about 300 B.C. He probably received his early mathematical education in Athens from the pupils of Plato, since most of the geometers and mathematicians on whom he depended were of that school. Proclus, the Neo-Platonist of the fifth century, asserts that Euclid was of the school of Plato and “intimate with that philosophy.” His opinion, however, may have been based only on his view that the treatment of the five regular (“Platonic”) solids in Book XIII is the “end of the whole Elements.”

The only other fact concerning Euclid is that he taught and founded a school at Alexandria in the time of Ptolemy I, who reigned from 306 to 283 B.C. The evidence for the place comes from Pappus (fourth century A.D.), who notes that Apollonius “spent a very long time with the pupils of Euclid at Alexandria, and it was thus that he acquired such a scientific habit of thought.” Proclus claims that it was Ptolemy I who asked Euclid if there was no shorter way to geometry than the Elements and received as answer: “There is no royal road to geometry.” The other story about Euclid that has come down from antiquity concerns his answer to a pupil who at the end of his first lesson in geometry asked what he would get by learning such things, whereupon Euclid called his slave and said: “Give him a coin since he must needs make gain by what he learns.”

Something of Euclid’s character would seem to be disclosed in the remark of Pappus regarding Euclid’s “scrupulous fairness and his exemplary kindness towards all who advance mathematical science to however small an extent.” The context of the remark seems to indicate, however, that Pappus is not giving a traditional account of Euclid but offering an explanation of his own of Euclid’s failure to go further than he did with his investigation of a certain problem in conics.

Euclid’s great work, the thirteen books of the Elements, must have become a classic soon after publication. From the time of Archimedes they are constantly referred to and used as a basic text-book. It was recognized in antiquity that Euclid had drawn upon all his predecessors. According to Proclus, he “collected many of the theorems of Eudoxus, perfected many of those of Theatetus, and also brought to incontrovertible demonstration the things which were only loosely proved by his predecessors.” The other extant works of Euclid include: the Data, for use in the solution of problems by geometrical analysis, On Divisions (of figures), the Optics, and the Phenomena, a treatise on the geometry of the sphere for use in astronomy. His lost Elements of Music may have provided the basis for the extant Sectio Canonis on the Pythagorean theory of music. Of lost geometrical works all except one belonged to higher geometry.

Since the later Greeks knew nothing about the life of Euclid, the mediaeval
translators and editors were left to their own devices. He was usually called Megarensis, through confusion with the philosopher Euclides of Megara, Plato's contemporary. The Arabs found that the name of Euclid, which they took to be compounded from ucli (key) and dis (measure) revealed the "key of geometry." They claimed that the Greek philosophers used to post upon the doors of their schools the well-known notice: "Let no one come to our school who has not learned the Elements of Euclid," thus transferring the inscription over Plato's Academy to all scholastic doors and substituting the Elements for geometry.
BOOK ONE

DEFINITIONS

1. A point is that which has no part.
2. A line is breadthless length.
3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.
5. A surface is that which has length and breadth only.
6. The extremities of a surface are lines.
7. A plane surface is a surface which lies evenly with the straight lines on itself.
8. A plane angle is the inclination to one another of two lines in a plane which meet one another and do not lie in a straight line.
9. And when the lines containing the angle are straight, the angle is called rectilineal.
10. When a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is right and the straight line standing on the other is called a perpendicular to that on which it stands.
11. An obtuse angle is an angle greater than a right angle.
12. An acute angle is an angle less than a right angle.
13. A boundary is that which is an extremity of anything.
14. A figure is that which is contained by any boundary or boundaries.
15. A circle is a plane figure contained by one line such that all the straight lines falling upon it from one point among those lying within the figure are equal to one another;
16. And the point is called the centre of the circle.
17. A diameter of the circle is any straight line drawn through the centre and terminated in both directions by the circumference of the circle, and such a straight line also bisects the circle.
18. A semicircle is the figure contained by the diameter and the circumference cut off by it. And the centre of the semicircle is the same as that of the circle.
19. Rectilineal figures are those which are contained by straight lines, trilateral figures being those contained by three, quadrilateral those contained by four, and multilateral those contained by more than four straight lines.
20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal.
21. Further, of trilateral figures, a right-angled triangle is that which has a right angle, an obtuse-angled triangle that which has an obtuse angle, and an acute-angled triangle that which has its three angles acute.
EUCLID

22. Of quadrilateral figures, a square is that which is both equilateral and right-angled; an oblong that which is right-angled but not equilateral; a rhombus that which is equilateral but not right-angled; and a rhomboid that which has its opposite sides and angles equal to one another but is neither equilateral nor right-angled. And let quadrilaterals other than these be called trapezia.

23. Parallel straight lines are straight lines which, being in the same plane and being produced indefinitely in both directions, do not meet one another in either direction.

POSTULATES

Let the following be postulated:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any centre and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

COMMON NOTIONS

1. Things which are equal to the same thing are also equal to one another.
2. If equals be added to equals, the wholes are equal.
3. If equals be subtracted from equals, the remainders are equal.
4. Things which coincide with one another are equal to one another.
5. The whole is greater than the part.

BOOK I. PROPOSITIONS

PROPOSITION I

On a given finite straight line to construct an equilateral triangle.

Let AB be the given finite straight line.

Thus it is required to construct an equilateral triangle on the straight line AB.

With centre A and distance AB let the circle BCD be described; [Post. 3] again, with centre B and distance BA let the circle ACE be described; [Post. 3] and from the point C, in which the circles cut one another, to the points A, B let the straight lines CA, CB be joined. [Post. 1]

Now, since the point A is the centre of the circle CDB,

AC is equal to AB. [Def. 15]

Again, since the point B is the centre of the circle CAE,

BC is equal to BA. [Def. 15]

But CA was also proved equal to AB;

therefore each of the straight lines CA, CB is equal to AB.

And things which are equal to the same thing are also equal to one another;

therefore CA is also equal to CB. [C. N. 1]

Therefore the three straight lines CA, AB, BC are equal to one another.
Therefore the triangle ABC is equilateral; and it has been constructed on the given finite straight line AB.

(Being) what it was required to do.

Proposition 2

To place at a given point (as an extremity) a straight line equal to a given straight line.

Let A be the given point, and BC the given straight line.

Thus it is required to place at the point A (as an extremity) a straight line equal to the given straight line BC.

From the point A to the point B let the straight line AB be joined; [Post. 1] and on it let the equilateral triangle DAB be constructed. [1. 1]

Let the straight lines AE, BF be produced in a straight line with DA, DB; [Post. 2] with centre B and distance BC let the circle CGH be described; [Post. 3] and again, with centre D and distance DG let the circle GKL be described. [Post. 3]

Then, since the point B is the centre of the circle CGH, BC is equal to BG.

Again, since the point D is the centre of the circle GKL, DL is equal to DG.

And in these DA is equal to DB; therefore the remainder AL is equal to the remainder BG. [C.N. 3]

But BC was also proved equal to BG; therefore each of the straight lines AL, BC is equal to BG.

And things which are equal to the same thing are also equal to one another; [C.N. 1]

therefore AL is also equal to BC.

Therefore at the given point A the straight line AL is placed equal to the given straight line BC.

(Being) what it was required to do.

Proposition 3

Given two unequal straight lines, to cut off from the greater a straight line equal to the less.

Let AB, C be the two given unequal straight lines, and let AB be the greater of them.

Thus it is required to cut off from AB the greater a straight line equal to C the less.

At the point A let AD be placed equal to the straight line C; [1. 2] and with centre A and distance AD let the circle DEF be described. [Post. 3]

Now, since the point A is the centre of the circle DEF, AE is equal to AD. [Def. 15]
But C is also equal to AD.

Therefore each of the straight lines AE, C is equal to AD; so that AE is also equal to C.

Therefore, given the two straight lines AB, C, from AB the greater AE has been cut off equal to C the less.

(Being) what it was required to do.

Proposition 4

If two triangles have the two sides equal to two sides respectively, and have the angles contained by the equal straight lines equal, they will also have the base equal to the base, the triangle will be equal to the triangle, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend.

Let ABC, DEF be two triangles having the two sides AB, AC equal to the two sides DE, DF respectively, namely AB to DE and AC to DF, and the angle BAC equal to the angle EDF.

I say that the base BC is also equal to the base EF, the triangle ABC will be equal to the triangle DEF, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend, that is, the angle ABC to the angle DEF, and the angle ACB to the angle DFE.

For, if the triangle ABC be applied to the triangle DEF,

and if the point A be placed on the point D

and the straight line AB on DE,

then the point B will also coincide with E, because AB is equal to DE.

Again, AB coinciding with DE,

the straight line AC will also coincide with DF, because the angle BAC is equal to the angle EDF;

hence the point C will also coincide with the point F, because AC is again equal to DF.

But B also coincided with E;

hence the base BC will coincide with the base EF.

[For if, when B coincides with E and C with F, the base BC does not coincide with the base EF, two straight lines will enclose a space: which is impossible.

Therefore the base BC will coincide with EF] and will be equal to it. [C.N. 4]

Thus the whole triangle ABC will coincide with the whole triangle DEF, and will be equal to it.

And the remaining angles will also coincide with the remaining angles and will be equal to them,

the angle ABC to the angle DEF,

and the angle ACB to the angle DFE.

(Being) what it was required to prove.

Proposition 5

In isosceles triangles the angles at the base are equal to one another, and, if the equal straight lines be produced further, the angles under the base will be equal to one another.

Let ABC be an isosceles triangle having the side AB equal to the side AC;
and let the straight lines BD, CE be produced further in a straight line with AB, AC. [Post. 2]

I say that the angle ABC is equal to the angle ACB; and the angle CBD to the angle BCE.

Let a point F be taken at random on BD; from AE the greater let AG be cut off equal to AF the less; and let the straight lines FC, GB be joined. [Post. 1]

Then, since AF is equal to AG and AB to AC, the two sides FA, AC are equal to the two sides GA, AB, respectively; and they contain a common angle, the angle FAG.

Therefore the base FC is equal to the base GB, and the triangle AFC is equal to the triangle AGB, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend, that is, the angle ACF to the angle ABG, and the angle AFC to the angle AGB. [I. 4]

And, since the whole AF is equal to the whole AG, and in these AB is equal to AC, the remainder BF is equal to the remainder CG.

But FC was also proved equal to GB; therefore the two sides BF, FC are equal to the two sides CG, GB respectively; and the angle BFC is equal to the angle CGB; while the base BC is common to them; therefore the triangle BFC is also equal to the triangle CGB, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend.

therefore the angle BFC is equal to the angle GCB, and the angle BCF to the angle CBG.

Accordingly, since the whole angle ABG was proved equal to the angle ACF, and in these the angle CBG is equal to the angle BCF, the remaining angle ABC is equal to the remaining angle ACB; and they are at the base of the triangle ABC.

But the angle FBC was also proved equal to the angle GCB; and they are under the base.

Therefore etc. Q.E.D.